

Features and Benefits

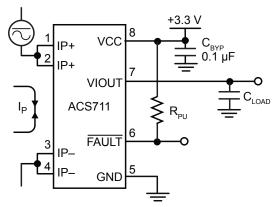
- No external sense resistor required; single package solution
- 1.2 m Ω internal conductor resistance; reduced power loss
- Economical low- and high-side current sensing
- Output voltage proportional to AC or DC currents
- ±12.5 A and ±25 A full scale sensing ranges
- Overcurrent FAULT trips and latches at 100% of full-scale current
- Low-noise analog signal path
- 100 kHz bandwidth
- Small footprint, low-profile SOIC8 package
- 3.0 to 5.5 V, single supply operation
- Integrated electrostatic shield for output stability
- Factory-trimmed for accuracy
- Extremely stable output offset voltage
- Zero magnetic hysteresis
- Ratiometric output from supply voltage

Package: 8 Lead SOIC (suffix LC)

Approximate Scale 1:1

Description

The Allegro® ACS711 provides economical and precise solutions for AC or DC current sensing in <100 V audio, communications systems, white goods, and automotive applications. The device package allows for easy implementation by the customer. Typical applications include circuit protection, current monitoring, and motor and inverter control.


The device consists of a linear Hall sensor circuit with a copper conduction path located near the surface of the die. Applied current flowing through this copper conduction path generates a magnetic field which is sensed by the integrated Hall IC and converted into a proportional voltage. Device accuracy is optimized through the close proximity of the magnetic signal to the Hall transducer.

The output of the device has a positive slope proportional to the current flow from IP+ to IP− (pins 1 and 2, to pins 3 and 4). The internal resistance of this conductive path is $1.2 \text{ m}\Omega$ typical, providing a non-intrusive measurement interface that saves power in applications that require energy efficiency.

The ACS711 is optimized for low-side current sensing applications, although the terminals of the conductive path are electrically isolated from the sensor leads (pins 5 through 8), providing sufficient internal creepage and clearance dimensions for a low AC or DC working voltage applications. The thickness

Continued on the next page...

Typical Application

Application 1. The ACS711 outputs an analog signal, V_{IOUT} , that varies linearly with the bi-directional AC or DC primary current, I_P , within the range specified. The \overline{FAULT} pin trips when I_P reaches $\pm 100\%$ of its full-scale current.

Hall Effect Linear Current Sensor with Overcurrent Fault Output for < 100 V Isolation Applications

Description (continued)

of the copper conductor allows survival of the device at up to $5\times$ overcurrent conditions.

The ACS711 is provided in a small, surface mount SOIC8 package. The leadframe is plated with 100% matte tin, which is compatible with standard lead (Pb) free printed circuit board assembly processes. Internally, the device is Pb-free, except for flip-chip high-temperature Pb-based solder balls, currently exempt from RoHS. The device is fully calibrated prior to shipment from the factory.

Selection Guide

Part Number	Packing ¹	T _A (°C)	Optimized Accuracy Range, I _P (A)	Sensitivity, Sens (Typ) (mV/A)
ACS711ELCTR-12AB-T ²	Tape and reel, 3000 pieces/reel	-40 to 85	±12.5	110
ACS711ELCTR-25AB-T ²	Tape and reel, 3000 pieces/reel	-40 to 85	±25	55
ACS711KLCTR-12AB-T ²	Tape and reel, 3000 pieces/reel	-40 to 125	±12.5	110
ACS711KLCTR-25AB-T ²	Tape and reel, 3000 pieces/reel	-40 to 125	±25	55

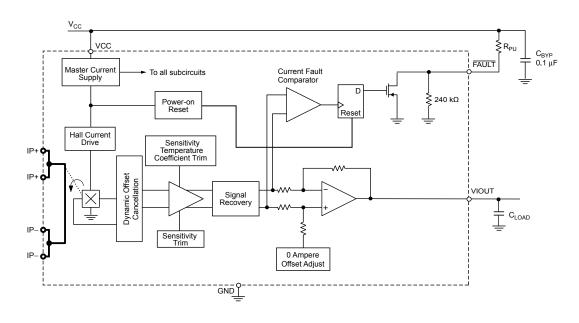
¹Contact Allegro for additional packing options.

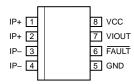
Absolute Maximum Ratings

Characteristic	Symbol	Notes	Rating	Units
Supply Voltage	V _{CC}		7	V
Reverse Supply Voltage	V_{RCC}		-0.1	V
Output Voltage	V _{IOUT}		7	V
Reverse Output Voltage	V _{RIOUT}		-0.1	V
Working Voltage for Basic Isolation	V _{WORKING}	Voltage applied between pins 1-4 and 5-8	100	VAC peak or VDC
FAULT Pin Voltage	V_{FAULT}		7	V
Overcurrent Transient Tolerance	I _{POC}	1 pulse, 100 ms	100	Α
Naminal Operating Ambient Temperature	т.	Range E	-40 to 85	°C
Nominal Operating Ambient Temperature	T _A	Range K	-40 to 125	°C
Maximum Junction Temperature	T _J (max)		165	°C
Storage Temperature	T _{stg}		-65 to 170	°C

Thermal Characteristics

Characteristic	Symbol	Test Conditions ¹	Value	Units
Package Thermal Resistance, Junction to Lead	$R_{ heta JL}$	Mounted on Allegro ASEK 711 evaluation board	5	°C/W
Package Thermal Resistance, Junction to Ambient ²	$R_{ heta JA}$	Mounted on Allegro 85-0404 evaluation board, includes the power consumed by the board	23	°C/W


¹Additional thermal information available on the Allegro website


 $^{^2}$ Sensitivity measured with V_{CC} = 3.3 V.

²The Allegro evaluation board has 1500 mm² of 2 oz. copper on each side, connected to pins 1 and 2, and to pins 3 and 4, with thermal vias connecting the layers. Performance values include the power consumed by the PCB. Further details on the board are available from the Frequently Asked Questions document on our website.

Functional Block Diagram

Pin-out Diagram

Terminal List Table

Number	Name	Description	
1 and 2	IP+	Terminals for current being sensed; fused internally	
3 and 4	IP-	Terminals for current being sensed; fused internally	
5	GND	Signal ground terminal	
6	FAULT	Overcurrent fault; active low	
7	VIOUT	Analog output signal	
8	VCC	Device power supply terminal	

Hall Effect Linear Current Sensor with Overcurrent Fault Output for < 100 V Isolation Applications

COMMON OPERATING CHARACTERISTICS over full range of T_A and V_{CC} = 3.3 V, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
ELECTRICAL CHARACTERIS	STICS					1
Supply Voltage ¹	V _{CC}		3	3.3	5.5	V
Supply Current	I _{CC}	V _{CC} = 3.3 V, output open	_	4	5.5	mA
Output Capacitance Load	C _{LOAD}	VIOUT to GND	_	_	1	nF
Output Resistive Load	R _{LOAD}	VIOUT to GND	15	_	_	kΩ
Primary Conductor Resistance	R _{IP}	T _A = 25°C	-	1.2	_	mΩ
VIOUT Rise Time	t _r	I _P = I _{PMAX} , T _A = 25°C, COUT = open	_	3.5	-	μs
Propagation Delay Time	t _{PROP}	$I_P = I_P(max), T_A = 25^{\circ}C, COUT = open$	_	1.2	-	μs
Response Time	t _{RESPONSE}	I _P = I _P (max), T _A = 25°C, COUT = open	_	4.6	-	μs
Internal Bandwidth ²	BWI	−3 dB, T _A = 25°C	_	100	_	kHz
Nonlinearity	E _{LIN}	Over full range of I _P	_	±1	-	%
Symmetry	E _{SYM}	Apply full scale I _P	_	100	_	%
VIOUT Saturation Voltages	V _{IOH}		V _{CC} - 0.3	_	-	V
	V _{IOL}		_	_	0.3	V
Quiescent Output Voltage	V _{IOUT(Q)}	$I_P = 0 \text{ A}, T_A = 25^{\circ}\text{C}$	_	V _{CC} / 2	-	V
Power-On Time	t _{PO}	Output reaches 90% of steady-state level, T _A = 25°C, 20 A present on primary conductor	_	35	_	μs
FAULT Pin Characteristics						
FAULT Operating Point	I _{FAULT}		_	±1xl _P	_	Α
FAULT Output Pullup Resistor	R _{PU}		1	_	-	kΩ
FAULT Output Voltage	V _{OH}		_	V _{CC} - 0.3	-	V
	V _{OL}	$R_{PU} = 1 \text{ k}\Omega$	_	0.3	_	V
FAULT Response Time	t _{FAULT}	Measured from I _P > I _{FAULT} to V _{FAULT} ≤ V _{OL}	_	1.3	_	μs
V _{CC} Off Voltage Level for Fault Reset ³	V _{CCFR}		_	_	200	mV
V _{CC} Off Duration for Fault Reset ³	t _{CCFR}		100	_	-	μs

 $^{^1}$ Devices are programmed for maximum accuracy at 3.3 V V_{CC} levels. The device contains ratiometry circuits that accurately alter the 0 A Output Voltage and Sensitivity level of the device in proportion to the applied V_{CC} level. However, as a result of minor nonlinearities in the ratiometry circuit additional output error will result when V_{CC} varies from the 3.3 V V_{CC} level. Customers that plan to operate the device from a 5 V regulated supply should contact their local Allegro sales representative regarding expected device accuracy levels under these bias conditions.

 $^{^{2}}$ Calculated using the formula BW_I = 0.35 / t_{r} .

 $^{^3}$ After the $\overline{\mathsf{FAULT}}$ pin is latched low, the only way to reset it is through a power-off and power-on cycle on the VCC pin. To get a guaranteed fault reset, V_{CC} must stay below $\mathsf{V}_{\mathsf{CCFR}}$ for a period greater than $\mathsf{t}_{\mathsf{CCFR}}$ before settling to the normal operation voltage (3 to 5.5 V).

Hall Effect Linear Current Sensor with Overcurrent Fault Output for < 100 V Isolation Applications

x12.5A PERFORMANCE CHARACTERISTICS for E TEMPERATURE RANGE T_A = 25°C and V_{CC} = 3.3 V, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Optimized Accuracy Range	I _P		-12.5	_	12.5	Α
		Over full range of I _P	-	110	-	mV/A
Sensitivity	Sens	Full scale of I _P applied for 5 ms, T _A = -40°C to 25°C	-	110	_	mV/A
		Full scale of I _P applied for 5 ms, T _A = 25°C to 85°C	-	110	_	mV/A
Noise ²	V _{NOISE}	T _A = 25°C, no external low pass filter on VIOUT	_	11	_	mV
	V _{OE(TA)}	I _P = 0 A, T _A = 25°C	_	±5	_	mV
Electrical Offset Voltage	V _{OE(TOP)HT}	I _P = 0 A, T _A = 25°C to 85°C	_	±40	_	mV
	V _{OE(TOP)LT}	$I_P = 0 \text{ A}, T_A = -40^{\circ}\text{C to } 25^{\circ}\text{C}$	_	±50	_	mV
Total Output Error ³	E _{TOT}	$I_P = \pm 12.5 \text{ A}, T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	_	±5	_	%

¹See Characteristic Performance Data for parameter distributions over temperature.

x12.5A PERFORMANCE CHARACTERISTICS for K TEMPERATURE RANGE1 $T_A = 25^{\circ}C$ and $V_{CC} = 3.3$ V, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Optimized Accuracy Range	Ι _P		-12.5	_	12.5	Α
		Over full range of I _P	_	110	_	mV/A
Sensitivity	Sens	Full scale of I _P applied for 5 ms, T _A = -40°C to 25°C	_	110	-	mV/A
		Full scale of I _P applied for 5 ms, T _A = 25°C to 125°C	_	110	-	mV/A
Noise ²	V _{NOISE}	T _A = 25°C, no external low pass filter on VIOUT	-	11	-	mV
	V _{OE(TA)}	I _P = 0 A, T _A = 25°C	-	±5	_	mV
Electrical Offset Voltage	V _{OE(TOP)HT}	I _P = 0 A, T _A = 25°C to 125°C	-	±40	_	mV
	V _{OE(TOP)LT}	$I_P = 0 \text{ A}, T_A = -40^{\circ}\text{C to } 25^{\circ}\text{C}$	-	±50	_	mV
Total Output Error ³	E _{TOT}	$I_P = \pm 12.5 \text{ A}, T_A = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$	_	±5	_	%

¹See Characteristic Performance Data for parameter distributions over temperature.

²±3 sigma noise voltage.

 $^{^{3}}$ Percentage of I_P, with I_P = ±12.5 A.

^{2±3} sigma noise voltage.

 $^{^{3}}$ Percentage of I_{P} , with I_{P} = ± 12.5 A.

Hall Effect Linear Current Sensor with Overcurrent Fault Output for < 100 V Isolation Applications

x25A PERFORMANCE CHARACTERISTICS for E TEMPERATURE RANGE T_A = 25°C and V_{CC} = 3.3 V, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Optimized Accuracy Range	I _P		-25	_	25	Α
		Over full range of I _P	_	55	-	mV/A
Sensitivity	Sens	Full scale of I _P applied for 5 ms, T _A = -40°C to 25°C	_	55	_	mV/A
		Full scale of I _P applied for 5 ms, T _A = 25°C to 85°C	_	55	_	mV/A
Noise ²	V _{NOISE}	T _A = 25°C, no external low pass filter on VIOUT	_	8	_	mV
	V _{OE(TA)}	I _P = 0 A, T _A = 25°C	-	±5	_	mV
Electrical Offset Voltage	(,		_	±30	_	mV
	V _{OE(TOP)LT}	$I_P = 0 \text{ A}, T_A = -40^{\circ}\text{C to } 25^{\circ}\text{C}$	_	±35	_	mV
Total Output Error ³	E _{TOT}	$I_P = \pm 25 \text{ A}, T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	_	±4	_	%

¹See Characteristic Performance Data for parameter distributions over temperature.

x25A PERFORMANCE CHARACTERISTICS for K TEMPERATURE RANGE1 T_A = 25°C and V_{CC} = 3.3 V, unless otherwise specified

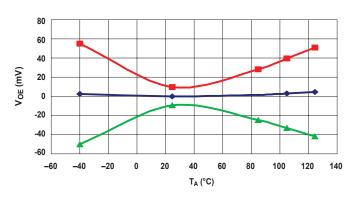
Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Optimized Accuracy Range	I _P		-25	_	25	Α
		Over full range of I _P	_	55	_	mV/A
Sensitivity	Sens	Full scale of I _P applied for 5 ms, T _A = -40°C to 25°C	_	55	-	mV/A
		Full scale of I _P applied for 5 ms, T _A = 25°C to 125°C	_	55	-	mV/A
Noise ²	V _{NOISE}	T _A = 25°C, no external low pass filter on VIOUT	_	8	-	mV
	V _{OE(TA)}	$I_P = 0 \text{ A}, T_A = 25^{\circ}\text{C}$	_	±5	_	mV
Electrical Offset Voltage	V _{OE(TOP)HT}	I _P = 0 A, T _A = 25°C to 125°C	_	±30	_	mV
	V _{OE(TOP)LT}	$I_P = 0 \text{ A}, T_A = -40^{\circ}\text{C to } 25^{\circ}\text{C}$	_	±35	_	mV
Total Output Error ³	E _{TOT}	I _P =±25 A, T _A = -40°C to 125°C	_	±4	_	%
	V _{OE(TOP)LT}	$I_P = 0 \text{ A}, T_A = -40^{\circ}\text{C to } 25^{\circ}\text{C}$	-	±35		m

¹See Characteristic Performance Data for parameter distributions over temperature.

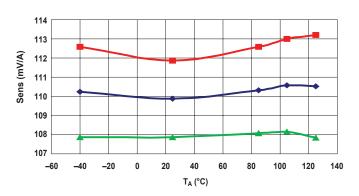
²±3 sigma noise voltage.

 $^{^{3}}$ Percentage of I_P, with I_P = ±25 A.

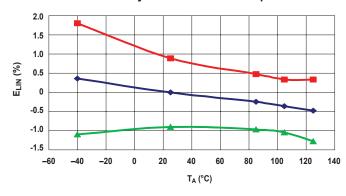
²±3 sigma noise voltage.

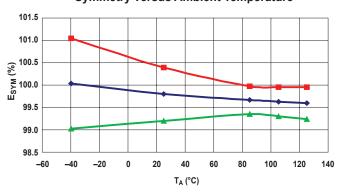

 $^{^{3}}$ Percentage of I_{P} , with I_{P} = ± 25 A.

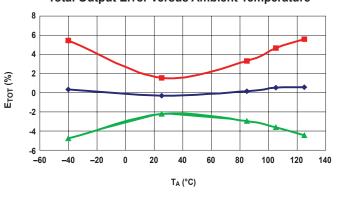
Characteristic Performance Data

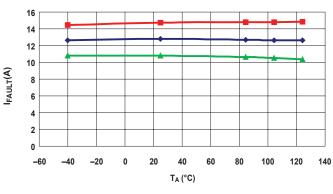

Data taken using the ACS711KLC-12A, V_{CC} = 3.3 V

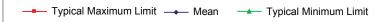
Accuracy Data




Sensitivity versus Ambient Temperature

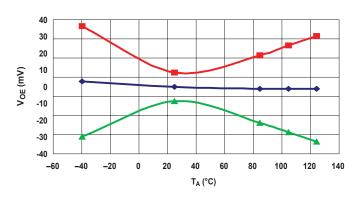

Nonlinearity versus Ambient Temperature


Symmetry versus Ambient Temperature

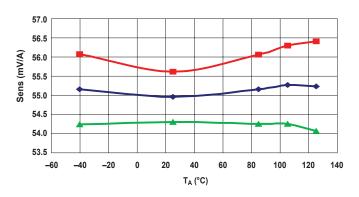


Total Output Error versus Ambient Temperature

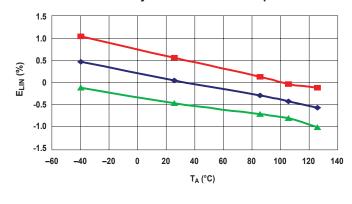
Fault Operating Point versus Ambient Temperature

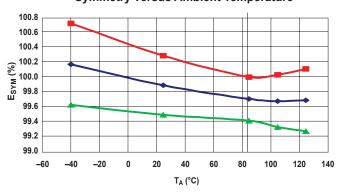


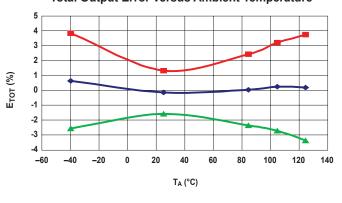
Characteristic Performance Data

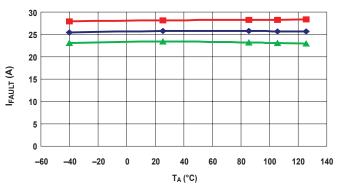

Data taken using the ACS711KLC-25A, V_{CC} = 3.3 V

Accuracy Data




Sensitivity versus Ambient Temperature

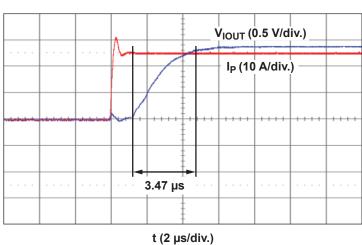

Nonlinearity versus Ambient Temperature

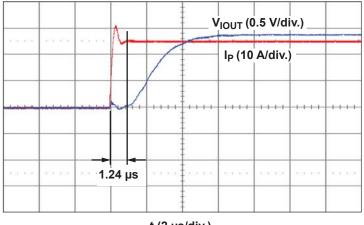

Symmetry versus Ambient Temperature

Total Output Error versus Ambient Temperature

Fault Operating Point versus Ambient Temperature

— Typical Maximum Limit → Mean Typical Minimum Limit

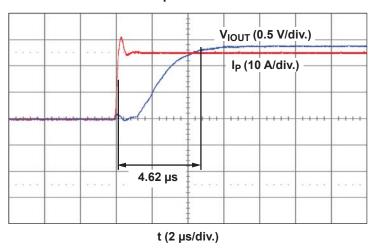

Characteristic Performance Data

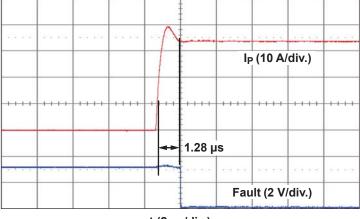

Data taken using the ACS711KLC-25A

Timing Data

Rise Time

Propagation Delay Time





t (2 µs/div.)

Response Time

Fault Response

t (2 µs/div.)

Hall Effect Linear Current Sensor with Overcurrent Fault Output for < 100 V Isolation Applications

Definitions of Accuracy Characteristics

Sensitivity (Sens). The change in sensor output in response to a 1 A change through the primary conductor. The sensitivity is the product of the magnetic circuit sensitivity (G/A) and the linear IC amplifier gain (mV/G). The linear IC amplifier gain is programmed at the factory to optimize the sensitivity (mV/A) for the full-scale current of the device.

Noise (V_{NOISE}). The product of the linear IC amplifier gain (mV) and the noise floor for the Allegro Hall effect linear IC. The noise floor is derived from the thermal and shot noise observed in Hall elements. Dividing the noise (mV) by the sensitivity (mV/A) provides the smallest current that the device is able to resolve.

Linearity (\mathbf{E}_{LIN}). The degree to which the voltage output from the sensor varies in direct proportion to the primary current through its full-scale amplitude. Nonlinearity in the output can be attributed to the saturation of the flux concentrator approaching the full-scale current. The following equation is used to derive the linearity:

where $V_{\text{IOUT full-scale amperes}}$ = the output voltage (V) when the

$$100 \left\{ 1 - \left[\frac{\Delta \text{ gain} \times \% \text{ sat } (V_{\text{IOUT}} \text{ full-scale amperes } - V_{\text{IOUT}(Q)})}{2 (V_{\text{IOUT}} \text{ half-scale amperes } - V_{\text{IOUT}(Q)})} \right] \right\}$$

sensed current approximates full-scale $\pm I_P$

Symmetry (E_{SYM}). The degree to which the absolute voltage output from the sensor varies in proportion to either a positive or negative full-scale primary current. The following formula is used to derive symmetry:

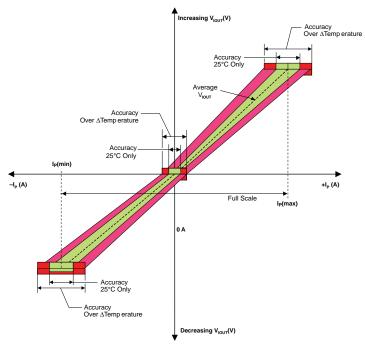
$$100 \left(\frac{V_{\text{IOUT}} + \text{full-scale amperes} - V_{\text{IOUT}(Q)}}{V_{\text{IOUT}(Q)} - V_{\text{IOUT}} - \text{full-scale amperes}} \right)$$

Quiescent output voltage ($V_{IOUT(Q)}$). The output of the sensor when the primary current is zero. For a unipolar supply voltage, it nominally remains at $V_{CC}/2$. Thus, $V_{CC}=3.3$ V translates into $V_{IOUT(Q)}=1.65$ V. Variation in $V_{IOUT(Q)}$ can be attributed to the resolution of the Allegro linear IC quiescent voltage trim and thermal drift.

Electrical offset voltage (V_{OE}). The deviation of the device output from its ideal quiescent value of $V_{CC}/2$ due to nonmagnetic causes. To convert this voltage to amperes, divide by the device sensitivity, Sens.

Accuracy (E_{TOT}). The accuracy represents the maximum deviation of the actual output from its ideal value. This is also known as the total ouput error. The accuracy is illustrated graphically in the output voltage versus current chart below.

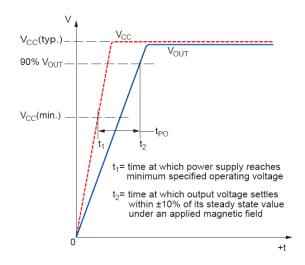
Ratiometry. The ratiometric feature means that its 0 A output, $V_{IOUT(Q)}$, (nominally equal to $V_{CC}/2$) and sensitivity, Sens, are proportional to its supply voltage, V_{CC} . The following formula is used to derive the ratiometric change in 0 A output voltage, $\Delta V_{IOUT(Q)RAT}$ (%).

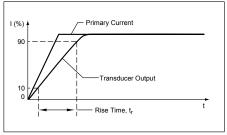

$$100 \left(\frac{V_{\text{IOUT(Q)VCC}} / V_{\text{IOUT(Q)3.3V}}}{V_{\text{CC}} / 3.3 \text{ V}} \right)$$

The ratiometric change in sensitivity, $\Delta Sens_{RAT}$ (%), is defined as:

$$100 \left(\frac{Sens_{VCC} / Sens_{3.3V}}{V_{CC} / 3.3 \text{ V}} \right)$$

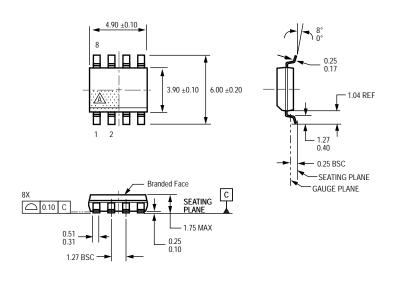
Output Voltage versus Sensed Current


Accuracy at 0 A and at Full-Scale Current



Definitions of Dynamic Response Characteristics

Power-On Time (t_{PO}). When the supply is ramped to its operating voltage, the device requires a finite time to power its internal components before responding to an input magnetic field. Power-On Time, t_{PO} , is defined as the time it takes for the output voltage to settle within $\pm 10\%$ of its steady state value under an applied magnetic field, after the power supply has reached its minimum specified operating voltage, $V_{CC}(min)$, as shown in the chart at right.


Rise time (t_r). The time interval between a) when the sensor reaches 10% of its full scale value, and b) when it reaches 90% of its full scale value. The rise time to a step response is used to derive the bandwidth of the current sensor, in which $f(-3 \text{ dB}) = 0.35/t_r$. Both t_r and $t_{RESPONSE}$ are detrimentally affected by eddy current losses observed in the conductive IC ground plane.

Package LC, 8-pin SOIC

B Standard Branding Reference View

PCB Layout Reference View

0 0 0 0

NNNNNNN

TPP-AAA LLLLL

5.60

N = Device part number T = Device temperature range

P = Package Designator

A = Amperage

Belly Brand = Country of Origin

For Reference Only; not for tooling use (reference MS-012AA) Dimensions in millimeters

Dimensions exclusive of mold flash, gate burrs, and dambar protrusions Exact case and lead configuration at supplier discretion within limits shown

A Terminal #1 mark area

Branding scale and appearance at supplier discretion

Reference land pattern layout (reference IPC7351 SOIC127P600X175-8M); all pads a minimum of 0.20 mm from all adjacent pads; adjust as necessary to meet application process requirements and PCB layout tolerances

Hall Effect Linear Current Sensor with Overcurrent Fault Output for < 100 V Isolation Applications

Revision History

Revision	Revision Date	Description of Revision			
Rev. 2	October 12, 2011	2011 Update branding specifications			

Copyright ©2008-2011, Allegro MicroSystems, Inc.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro's products are not to be used in life support devices or systems, if a failure of an Allegro product can reasonably be expected to cause the failure of that life support device or system, or to affect the safety or effectiveness of that device or system.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

For the latest version of this document, visit our website:

www.allegromicro.com

