
Optor Visual-Inertial Camera

Instruction Manual

V0.3



Optor Visual Inertial Camera is a general vision sensor designed for visual algorithm

developers.Providing abundant hardware control interface and data interface aimed to

reduce development threshold with reliable image and inertial data.

1.Hardware Specifications

1.1 Physical Dimensions

1.2 Camera Coordinate System between Left camera and IMU



1.3 Hardware Performance and Specifications



2.Product Feature

2.1 IMU zero bias calibration program, Zero bias initialization algorithm of DMP, High

precision 6-DOF data, Minimum attitude drift.

2.2 Stereo optical parameters already accurately calibrated



2.3 The lens seat rifled through special processing, to ensure the camera would not

loosen in the long-term delivery and the lens can be replaced.

1.SDK needs no compilation,no special dependency libraries

(only relay on libusb)

2.stable and reliable ROS driver

3.Ubuntu 16/14 supported

3.Hardware&Software Architecture

3.1 Hardware Architecture



3.2 SDK Architecture

4. SDK directory structure and Demo compilation step by step

4.1 SDK directory structure



4.2 C++ sample program compilation

This program is the minimum demonstration of Opt SDK, please make sure OPENCV

has been successfully installed on your computer.

If not installed, the latest version of OPENCV can be downloaded in official website.

1.choose your work space, such as /home/workspace/



2.Copy /optor_VI_Sensor_SDK_V1.1/SDK to /home/workspace/

3.start command line, enter the ROOT

cudo -s

4.Enter SDK catalog

cd/home/workspace/optor_VI_Sensor_SDK_V1.1/SDK

5. Execute CMake cmake .

6.Compile the sample program make

7.Execute Demo program

./camtest

8.Applications results

9.If program failed, please see 11.1 for solution.

4.3 ROS Package

ROS Package this Package rely on

cv_bridge

image_transport

opencv2

roscpp

rospy

sensor_msgs

std_msgs



1.find your catkin workspace and enter /src catalog

cd/home/workspace/catkin_ws/src

2.Copy /optor_VI_Sensor_SDK_V1.1/ROS/optor_stereo_visensor to catkin_ws/src

3.Enter catkin workspace

cd /home/workspace/catkin_ws

4.Compile

catkin_make

5.If compilation successful, the ROS Node can run normally; Otherwise you need to

check whether Optor ROS Package has been successfully installed in ROS system.

4.4 ROS Package:How to start

1.Before running, update the ROS environment variables

Source/devel/setup.bash

2.Once step 4.3 is successful, you can start the ROS node, the command is:

roscore & rosrun optor_stereo_visensor_ros stereo_visensor_node

SETTINGS_FILE_PATH

You need replace SETTINGS_FILE_PATH with the actual path of

“optor_VISensor_Setups.txt”, such as:

/home/di-tech/workspace/optor_VI_Sensor_SDK_V1.0/SDK/ optor_VISensor_Setups.txt

Or directly to catkin_ws/src/optor_stereo_visensor and start the

order：roscore & rosrun optor_stereo_visensor_ros

stereo_visensor_node

3.expected output:



4.If your ROS operation permission is not the root but the average user, it may lead to

the problem that ROS driver quit automatically. You can solve the problem following

11.1.

4.5 Get the Timestamp Data

Image data and IMU data have been added precise timestamp by Optor ROS Drive, you

can get them in msg.header.Stamp.

5. Camera Configuration File

If you look at the usage of main() in camtest.CPP file, you will find the use of SDK is very

simple:

1. visensor_load_settings(“optor_VISensor_Setups.txt”);

2. visensor_Start_Cameras(); // start the camera

3. visensor_Start_IMU(); // start IMU

first, we require the system load the camera configuration file, since the file contains

several parameters for camera and IMU.Follow the picture:



如

Blue area is used to record imu zero bias, and specific set method will be given in step 8.

6. visensor_API Instructions

6.1 Camera Controls

1.void visensor_set_auto_EG(int E_AG); Set the

exposure mode:

E_AG=0 means manual mode, you need to set the exposure value manually; E_AG=1

means automatic mode (Limit of 0-255);

E_AG=2 means automatic&manual mode(setting the gain value):

visensor_set_gain()

E_AG=3 means automatic gain&exposure mode

2. void visensor_set_exposure(int_man_exp); Set manual

exposure value (Limit of 0-255)

3.void visensor_set_gain(int_man_gain); Set the manual

gain value

4.void visensor_set_max_autoExp(int max_exp);

Set maximum on automatic exposure mode (limit of 0-255)

5.void visensor_set_max_autoEXP(int max_exp);

Set minimum of automatic exposure mode (limit of 0-255)

6.void visensor_set_resolution(bool set_wvga);

Set the resolution,set_wvga=ture means 752*480 otherwise 640*480;

7.void visensor_set_fps_mode(bool fps_mode);

Set the frame rate:

Fps_mode=ture means High frame rate:



According to HB under WVGA, range from 40fps-50fps; According

to HB under VGA, range from 50fps-65fps; Fps_mode=ture means

Low frame rate:

According to HB under WVGA, range from 22fps-27fps; According

to HB under VGA, range from 22fps-25fps;

8.void visensor_set_current_HB(int HB);

Set current HB .range from 70-255;

9.void visensor_set_desired_bin(int db);

Set up automatic exposure to “Achieve brightness”, CMOS will adjust exposure

automatically according to the numerical. The higher the db, the brighter the image

ranging from 0 to 48.

10.void visensor_set_cam_selection_mode(int_visensor_cam_selection); You can

choose different mode of “left eye”,”right eye”and “binocular”through Camera.

_visensor_cam_selection=0 means “binocular”;

_visensor_cam_selection=1 means “right eye”;

_visensor_cam_selection=2 means “left eye”;

11.void visensor_set_current_mode(int_mode); Change the

current camera work mode manually.

12.int visensor_Start_Cameras();｜void visensor_Close_Cameras(); Start and turn

off the camera safely.

Function Visensor_Start_Cameras()should be called after calling function 1-11 which

means if you need to change the camera settings through API it should be acted before

visensor_Start_Cameras.

13.void visensor_save_current_settings();

To save the current mode settings in the configuration file should be acted after function

1-11.

6.2 Image data read interface

1. void visensor_get_stereolmg(char*left_img,char*right_img); Fetch current

left-eye&right-eye images(single channel)

2.void

visensor_get_stereolmg(char*left_img,char*right_img,timeval&left_sta

mp,timeval*right_stamp);

Fetch current left-eye&right-eye images(single channel) and return the timestamp of

shooting time.



3.visensor_get_leftlmg(char*left_img); Only fetch the

left-eye image.

4.void visensor_get_leftlmg(char*left_img,timeval*left_stamp);

Only fetch the left-eye image and return the timestamp of shooting time.

5.visensor_get_rightlmg(char*right_img);

Only fetch the right-eye image.

6.void visensor_get_rightlmg(char*right_img,timeval*right_stamp); Only fetch the right-

eye image and return the timestamp of shooting time.

6.3 IMU Control

1.visensor_Start_IMU();

Open the serial port and start IMU.

2.void visensor_Close_IMU();

Turn off IMU safely.

3.void visensor_set_imu_portname(chat*input_name); Set the

serial port name manually.

6.4 IMU Data

1.void visensor_set_imu_bias(float bx,float by,float bz); Setting IMU zero

bias manually.

2.visensor_imudata visensor_imudata_pack

The variables are set as globle variables to record current IMU data(timestamp

included) and it can be referenced as optorimu.h

7. Setting HB parameters manually

HB (Horizontal Blanking) line of Blanking, a CMOS MT9V034 register which is an

important parameter, it can affect the size of the frame rate, if the setting is not

appropriate (too big or too small) also can result in images caton, frame lost even USB

connection failure.

The greater the HB, each frame transmission time is longer, the lower frame rate; If your

USB bus capacity is limited, we suggest set the HB to around 250.

HB is smaller, the higher acquisition frame rate, but the greater the pressure for USB

transmission. Smaller HB values (such as 120-194) is more suitable for PC with strong

USB transmission ability.

If you find the camera there lost frames and caton, modify HB values

through the API, and then call visensor_save_current_settings () to save the Settings.

8.IMU accelerometer zero calibration procedure



1.Follow the command line to enter IMU_Calib folder, start

. / imucalib to set zero calibration according to clew .

2.After calibration completed it will automatically write into the configuration file:

imucaldata. TXT , then you need to manually copy the three parameters in the

configuration file to Optor_VISensor_Setups. TXT in the blue area.

9. Optical calibration

We use the ROS camera_calibration factory for camera calibration, its parameters has

been written to the file:

/ ORB_SLAM2 / Examples/Stereo/EuRoC.yaml

10. Compile the ORB - SLAM2 and use Optor camera for testing

1.Following the ORB - SLAM2 official guidance for ORB - SLAM2 compilation and

configuration.

2.Since the optical calibration has been completed,first run Optor ROS Node after

compilation, then run the ORB - SLAM2 following default configuration.

11. Several Problems you may meet

11.1 serial file cannot be opened

1. The serial port name is wrong; You need to check the USB device serial path, and

write the paths in the corresponding part in Optor_VISensor_Setups. TXT

2.Ordinary users can't open the serial port under file (access problem) : Under Linux

device you need to use sudo or the root user and in order to make ordinary users also



can use a serial port you can increase the udev rules to implement, the specific method

is as follows:

Sudo vim/etc/udev/rules. D / 70 - ttyusb. Rules Add the

following contents:

KERNEL = = "ttyUSB [0-9] *", the MODE = "0666", save and insert the USB to turn over

serial port,it can be solved.

11.2 When IMU is on electricity you need to wait for 8 to 10 seconds and initialize the

gyroscope to zero bias, remain the camera still, otherwise will result in attitude drift

obviously.


