Instrukcja obsługi

Ręczne oscyloskopy cyfrowe serii SHS800

wersja nr V 1.2

DYSTRYBUCJA I SERWIS:

"NDN - Z. Daniluk" 02-784 Warszawa, ul. Janowskiego 15 tel./fax (0-22) 641-15-47, 641-61-96 e-mail: ndn@ndn.com.pl

SIGLENT TECHNOLOGIES Co, LTD

Oświadczenia

- 1. Copyright © Siglent Technologies Co., Ltd. All Rights Reserved, wszelkie prawa zastrzeżone.
- 2. Informacje zawarte w poniższej instrukcji zastępują wszystkie dane publikowane wcześniej.
- 3. SIGLENT zastrzega sobie prawo do zmian podanych danych i ceny bez wcześniejszego powiadomienia.
- 4. Zawartość niniejszej instrukcji nie może być kopiowana, cytowana i tłumaczona w całości lub w części bez uzyskania pisemnej zgody firmy SIGLENT.

Zasady bezpieczeństwa

Aby uniknąć porażenia prądem elektrycznym i/lub uszkodzenia przyrządu i innych urządzeń, zaleca się uważne przeczytanie i przestrzeganie poniższych uwag eksploatacyjnych z zakresu bezpieczeństwa przed przystąpieniem do pracy z oscyloskopem serii SHS800.

W miejscach instrukcji, których tekstu dotyczą, pojawiają się odpowiednie uwagi i ostrzeżenia.

Akapity oznaczone terminem "Ostrzeżenie" identyfikują warunki pracy i czynności, przy których istnieje ryzyko porażenia prądem użytkownika.

Akapity oznaczone terminem "Uwaga" identyfikują warunki pracy i czynności, na które użytkownik powinien zwracać szczególna uwagę.

Na obudowie przyrządu SHS800 i w instrukcji używane są poniższe międzynarodowe symbole bezpieczeństwa:

Uwaga! Wysokie napiecie! Zacisk przewodu Ostrzeżenie! ochronnego

Zacisk masy

Włacznik zasiania

Aby uniknąć pożaru lub obrażeń personelu obsługi, należy:

- Używać tylko izolowanych sond napięciowych, przewodów pomiarowych i adapterów dostarczonych z przyrządem SHS800 lub akcesoriów wskazanych przez producenta.
- Przed użyciem dokonać sprawdzenia sond napięciowych, przewodów pomiarowych i akcesoriów pod kątem uszkodzeń mechanicznych i w przypadku stwierdzenia niesprawności dokonać ich wymiany.
- Zawsze przed podłączeniem do oscyloskopu ładowarki baterii podłączyć ją do gniazdka sieci zasilającej.
- Przy pomiarach w obwodach III kategorii instalacyjnej nie podawać na gniazda wejściowe oscyloskopu napięć wyższych niż 600 V względem potencjału ziemi. W przypadku pomiarów w środowisku II kategorii nie podawać na gniazda wejściowe oscyloskopu napięć wyższych niż 1000 V względem potencjału ziemi.
- Nie podawać na wejście przyrządu napięć wyższych niż znamionowe. Zachować szczególną ostrożność przy stosowaniu sond pomiarowych i przewodów o tłumieniu 1:1, gdyż wtedy napiecie na końcówce sondy jest przenoszone bezpośrednio na obwody wejściowe oscyloskopu SHS800.
- Przy korzystaniu z gniazd multimetru do pomiarów w obwodach III kategorii instalacyjnej nie podawać na wejście oscyloskopu napięć wyższych niż 300 V względem potencjału ziemi. Przy korzystaniu z gniazd multimetru do pomiarów w obwodach II kategorii instalacyjnej nie podawać na wejście oscyloskopu napięć wyższych niż 600 V względem potencjału ziemi.

Nie podawać na żadne wejście oscyloskopu napięć wyższych niż 300 V względem potencjału ziemi przy korzystaniu z izolowanych gniazd multimetru w środowisku III kategorii instalacyjnej. Nie podawać na żadne wejście oscyloskopu napięć wyższych niż 600 V względem potencjału ziemi przy korzystaniu z izolowanych gniazd multimetru w środowisku II kategorii instalacyjnej.

• Nie wkładać żadnych metalowych przedmiotów do gniazd przyrządu.

Korzystanie z przyrządu SHS800 w sposób niezgodny z zapisami instrukcji obsługi może doprowadzić do obniżenia poziomu bezpieczeństwa gwarantowanego przez jego konstrukcję. Przed użyciem oscyloskopu zawsze sprawdzić stan przewodów pomiarowych, a w przypadku stwierdzenia uszkodzenia należy je bezwzględnie wymienić na sprawne!

W każdym przypadku podejrzenia o pogorszenie poziomu bezpieczeństwa, oscyloskop SHS800 należy wyłączyć i odłączyć od sieci zasilającej, a następnie zwrócić się o rozwiązanie problemu do wykwalifikowanego personelu serwisu.

OSTRZEŻENIE:

Standardowa sonda 10:1 jest przeznaczona do pracy w obwodach kategorii II 400 V. Sondy opcjonalne sa przeznaczone do pracy w obwodach kat. II 1000 V i kat. III 600 V.

Bezpieczeństwo pracy przy zasilaniu bateryjnym

Ręczny oscyloskop cyfrowy serii SHS800 można wykorzystywać do pomiarów sygnałów izolowanych od ziemi (ang. *float*) tylko wtedy, gdy jest on zasilany z baterii. Gdy do pomiarów sygnałów izolowanych od potencjału ziemi używane są dwa kanały, to oba kanały muszą być podłączone do tego samego potencjału odniesienia, gdyż przewody masy kanałów wejściowych są połączone.

OSTRZEŻENIE:

Nie podłączać przewodu masy (sprężynka uziemiająca) kanału do napięć wyższych niż 30 Vrms (wartość skuteczna) lub 42 Vp (wartość szczytowa) względem potencjału ziemi.

OSTRZEŻENIE:

Nie podłączać oscyloskopu SHS800 przez port USB do innych urządzeń (np. komputera, drukarki itp.), które są podłączone do przewodu ochronnego sieci zasilającej (uziemione), gdyż może to spowodować zapalenie się przyrządu i podłączonych do niego urządzeń.

Wprowadzenie do przyrządów serii SHS800

Niniejsza instrukcja opisuje głównie ręczne oscyloskopy cyfrowe serii SHS800.

Przyrząd serii SHS800 jest wysokiej jakości ręcznym oscyloskopem o szerokim zakresie dynamiki wejściowej, małych wymiarach zapewniających wygodny transport, kompaktowym interfejsie itd. Dzięki swoim cechom spełnia większość wymagań dla pomiarów terenowych i znacząco zwiększa wydajność pracy.

Charakterystyka

- Przyrządy SHS800 łączą w jednej obudowie dwukanałowy oscyloskop, multimetr i rejestrator (łącznie z wykresami trendów i pamięcią przebiegów).
- Znamionowe napięcia wejściowe kanałów oscyloskopu: Napięcie wejściowe bezpośrednio przez sondę BNC – 300 V kat. II i 150 V kat. III, Sonda standardowa – 10X 400 V kat. II, Sonda opcjonalna – 10X 1000 V kat. II i 10X 600 V kat. III. Maksymalne napięcia bezpieczne oscyloskopu i multimetru: 600 V kat. II i 300 V kat. III.
- 5,7-calowy ekran TFT LCD.
- Pasmo maksymalne 200 MHz, próbkowanie w czasie rzeczywistym 1 GSa/s, pamięć przebiegu 2 Mpkt.
- Maksymalny odczyt multimetru 6000. Możliwość pomiaru napięcia, prądu, rezystancji, pojemności, diod półprzewodnikowych, ciągłości obwodu.
- Funkcja wykreślania trendu parametrów mierzonych oscyloskopem i multimetrem i rejestracja przebiegów wejściowych oscyloskopu.
- 3 tryby wyzwalania: auto, normal, single; 5 rodzajów wyzwalania: zbocze, impulsy, video, nachylenie zbocza, wyzwalanie przemienne.
- 32 rodzaje parametrów mierzonych automatycznie i 3 rodzaje pomiarów kursorowych.
- ♦ 5 rodzajów trybów filtracji cyfrowej: +. -, *, /, FFT
- Unikalna funkcja filtracji cyfrowej i funkcja nagrywania przebiegów.
- Pamięć wewnętrzna 2 przebiegów odniesienia, 10 przebiegów standardowych, 10 kompletów ustawień. Zachowywanie (z możliwością odtworzenia) w zewnętrznej pamięci flash USB przebiegów, ustawień, widoków ekranu w plikach BMP i CSV.
- Standardowe interfejsy komunikacyjne USB Host, USB Device do aktualizacji oprogramowania firmowego, sterowania zdalnego przez komputer PC i wydruku na drukarkach PicBridge.
- Wygodna praca w terenie i łatwy transport dzięki kompaktowym wymiarom i wbudowanej litowej baterii zasilającej.

Wyposażenie przyrządu SHS800

- Instrukcja obsługi
- Karta gwarancyjna
- Certyfikat jakości
- ♦ 2 sondy 1:1/10:1
- ♦ Kabel USB
- Zasilacz sieciowy (ładowarka baterii zasilającej)
- Przewody pomiarowe multimetru
- Przyrząd do kalibracji sond pomiarowych
- Dysk CD (z oprogramowaniem EasyScope 3.0 na komputer PC)

Sonda opcjonalna

Bezpieczna sonda wysokonapięciowa 100 MHz kat. II 1000 V, kat. III 600 V

Spis treści

ZASADY BEZPIECZEŃSTWAII
BEZPIECZEŃSTWO PRACY PRZY ZASILANIU BATERYJNYMIV
WPROWADZENIE DO PRZYRZĄDÓW SERII SHS800V
CharakterystykaV
Wyposażenie przyrządu SHS800VI
ROZDZIAŁ 1: WSTĘP1
Panel czołowy i interfejs użytkownika1
Test funkcjonalny i kompensacja sondy pomiarowej4
ROZDZIAŁ 2: ZASADY OBSŁUGI OSCYLOSKOPU5
Przyciski menu i przyciski sterujące5
Funkcja samonastawności5
Menu kanałów CH1 i CH26
Menu funkcyjne oscyloskopu9
Układ akwizycji sygnału9
Ustawienia ekranu11
Operacje matematyczne12
Układ odchylania poziomego15
Przebiegi odniesienia17
Pomiary sygnału18
Pomiary kursorowe
Pomiary parametrów sygnału20
Układ wyzwalania25
System pamięci32
Ustawienia systemowe
ROZDZIAŁ 3: ZASADY OBSŁUGI MULTIMETRU42
Pomiar napięcia stałego DC i zmiennego AC43
Pomiar rezystancji44
Test diod półprzewodnikowych45
Test ciągłości obwodu45
Pomiar pojemności46
Pomiar prądu stałego DC i zmiennego AC46
ROZDZIAŁ 4: KORZYSTANIE Z FUNKCJI REJESTRATORA
Wykres trendu pomiarów oscyloskopowych50
Rejestrator przebiegów52
Wykres trendu pomiarów multimetrycznych55

ROZDZIAŁ 5:	KOMUNIKATY EKRANOWE I USUWANIE USTEREK	58
Komunika	aty ekranowe	58
Lokalizac	ja i usuwanie usterek	59
ROZDZIAŁ 6:	SERWIS I WSPARCIE TECHNICZNE	61
Warunki	gwarancji	61
Dane kon	taktowe firmy SIGLENT	61
DODATEK A:	SPECYFIKACJA TECHNICZNA	62
DODATEK B:	USTAWIENIA DOMYŚLNE	68
DODATEK C:	INSTALACJA BATERII	70
DODATEK D:	UTRZYMANIE I KONSERWACJA	71

Rozdział 1: Wstęp

Zawartość rozdziału

W rozdziale omówiono następujące zagadnienia:

- Elementy panelu czołowego oraz interfejs użytkownika
- Proste sprawdzenie wstępne funkcji przyrządu
- Kompensacja sondy pomiarowej

Panel czołowy i interfejs użytkownika

Jedną z pierwszych czynności, jakie należy wykonać przed rozpoczęciem pracy z przyrządem SHS800 jest dokładne zapoznanie się z elementami jego panelu czołowego. Poniższy rozdział zawiera krótki opis funkcji panelu czołowego, co pomoże użytkownikowi w krótkim czasie poznać podstawowe zasady obsługi oscyloskopu serii SHS800.

Rysunek 1-1 Widok panelu czołowego

Opis

- 1. Włącznik zasilania
- Przycisk czułości i położenia w pionie kanału CH1
- 3. Przycisk włączania/wyłączania kanału CH1
- 4. Przyciski funkcji oscyloskopu, multimetru i rejestratora
- 5. Przyciski funkcyjne menu ekranowego
- 6. Rączka
- 7. Ekran LCD
- 8. Logo producenta
- 9. Pasmo i częstość próbkowania
- 10. Przycisk menu ekranowego

- 11. Przyciski nawigacyjne
- 12. Przyciski funkcyjne Run/Stop, Auto i Cursor
- 13. Przycisk włączania/wyłączania kanału CH2
- 14. Przyciski funkcyjne Trigger, User, i Save/Recall
- 15. Przycisk czułości i położenia w pionie kanału CH2
- 16. Przyciski podstawy czasu i położenia przebiegu w poziomie
- 17. Gniazda wejściowe multimetru

Uwagi:

Przyciski nawigacyjne pełnią następujące funkcje: przycisków kierunkowych, zmiany poziomu wyzwalania, ustawienia poziomu wyzwalania na zero, wyboru opcji menu, ustawienie położenie zerowego przebiegu w poziomie, przesuwania kursorów.

Rysunek 1-2 Widok panelu bocznego

Opis

- 1. Port USB Device
- 2. Port USB Host
- 3. Gniazdo zasilacza sieciowego

Rysunek 1-3 Interfejs użytkownika

Opis

1. Wskaźnik stanu wyzwalania:

Armed: Oscyloskop rejestruje dane przebiegu przed punktem wyzwolenia. W tym stanie wszystkie zdarzenia wyzwalające są ignorowane.

Ready: Wszystkie próbki przed punktem wyzwolenia zostały zarejestrowane i oscyloskop jest gotowy do akceptacji zdarzenia wyzwalającego.

Trig'd: Oscyloskop wykrył impuls wyzwalający i rejestruje próbki przebiegu następujące po nim.

Stop: Oscyloskop zatrzymał próbkowanie przebiegu.

Auto: Oscyloskop jest w trybie automatycznym i rejestruje dane przebiegu wejściowego nawet przy braku zdarzeń wyzwalających.

Scan: Oscyloskop w sposób ciągły rejestruje dane sygnału i wyświetla przebieg na ekranie (tryb skanowania).

- 2. Wskaźnik położenia w pamięci akwizycji odcinka przebiegu wyświetlanego na ekranie.
- 3. Znacznik położenia punktu wyzwalania w pamięci.
- 4. Wskaźnik statusu opcji wydruku Print Key:

- ustawiona jest opcja drukowania (Print Figure),
- 🚯 ustawiona jest opcja zapisu do pamięci (Save Figure).
- 5. Wskaźnik trybu pracy portu USB Device:
 - 🖫 port jest ustawiony do pracy z komputerem,

left - port jest ustawiony do pracy z drukarką.

- 6. Wskaźnik statusu zasilania
- 7. Zegar czasu rzeczywistego
- 8. Wskaźnik położenia przebiegu w poziomie
- 9. Odczyt częstościomierza
- 10. Wskaźnik poziomu wyzwalania
- 11. Wskaźnik podstawy czasu

- 12. Symbol "**B**" włączony ogranicznik pasma
- 13. Wskaźnik sprzężenia kanału
- 14. Wskaźnik czułości kanału
- 15. Symbol "**2**" oznacza kanał 2.
- 16. Symbol "**1**" oznacza kanał 1.
- 17. Symbol "T" wskazuje poziom wyzwalania

Test funkcjonalny i kompensacja sondy pomiarowej

Test funkcjonalny

W celu sprawdzenia czy oscyloskop pracuje prawidłowo, należy wykonać poniższy szybki test funkcjonalny.

- 1. Włączyć przyrząd. Oscyloskop SHS800 wykona procedurę autotestu i sprawdzi, czy wszystkie punkty procedury będą miały wynik pozytywny.
- Podłączyć sondę do wejścia kanału 1. (CH1) oscyloskopu. Aby to zrobić, należy nacięcie wtyku BNC sondy ustawić na wprost kołka na zewnątrz gniazda BNC CH1, wcisnąć wtyk i obrócić go w prawo do zaskoku. Końcówkę sondy i jej przewód masowy podłączyć do wyjść kompensatora sondy Probe Comp.
- 3. Nacisnąć przycisk **"Auto**". W ciągu kilku sekund na ekranie wyświetlony zostanie przebieg prostokątny o częstotliwości 1kHz i amplitudzie ok. 3Vp-p.
- 4. Nacisnąć dwukrotnie przycisk "**CH1**", aby wyłączyć kanał 1., a następnie włączyć kanał 2., naciskając przycisk "**CH2**". Powtórzyć punkty 2 i 3 procedury.

Kompensacja sondy pomiarowej

Zawsze przy pierwszym podłączeniu sondy do danego kanału należy wykonać jej kompensację w celu dopasowania impedancji sondy do impedancji wejściowej kanału. Używanie sondy bez kompensacji lub po kompensacji nieprawidłowej jest powodem niedokładnych lub błędnych pomiarów sygnału wejściowego. Aby dopasować impedancję sondy do obwodu wejściowego danego kanału, należy ręcznie wykonać jej kompensację zgodnie z poniższą procedurą.

- W menu kanału CH1 ustawić tłumienie sondy na 10X. Przestawić przełącznik tłumienia sondy na pozycję 10X i podłączyć sondę do wejścia kanału 1. oscyloskopu. Jeżeli używana jest końcówka haczykowa sondy, należy upewnić się, że końcówka jest mocno wciśnięta na sondę, zapewniając pewny kontakt elektryczny.
- Podpiąć końcówkę sondy do zacisku sygnałowego kompensatora (Probe Comp~3V), a jej przewód masowy - do zacisku masy kompensatora (Gnd). Włączyć CH1 i nacisnąć przycisk samonastawności "AUTO".
- 3. Sprawdzić kształt wierzchołków przebiegu na ekranie.

 Jeżeli to konieczne za pomocą narzędzia z nieprzewodzącą końcówką regulować trymerem sondy do uzyskania na ekranie maksymalnie płaskich wierzchołków impulsów lub powtórzyć wszystkie punkty procedury.

Rozdział 2: Zasady obsługi oscyloskopu

Zawartość rozdziału

Rozdział zawiera wprowadzenie krok po kroku do funkcji oscyloskopu serii SHS800. We wprowadzeniu przedstawiono przykłady korzystania z menu ekranowego i wykonywania podstawowych operacji bez wykorzystywania wszystkich możliwości dostępnych funkcji.

Aby efektywnie wykorzystywać przyrząd serii SHS800, należy dokładnie poznać zestawione poniżej funkcje oscyloskopu, menu i przyciski sterujące, gniazda wejściowe, samonastawność, funkcje pomiarowe, system wyzwalania, obsługę pamięci i ustawienia systemowe.

Przyciski menu i przyciski sterujące

CH1, CH2	Menu kanałów wejściowych		
Acquire	Menu układu akwizycji		
Display	Menu ekranu		
Math	Menu operacji matematycznych na przebiegach		
Horizon	Menu układu odchylania poziomego		
Ref	Menu przebiegów odniesienia		
MEAU	Włączanie / wyłączanie menu		
Auto	Menu funkcji samonastawności		
Run/Stop	Przycisk uruchamiania / zatrzymywania akwizycji danych sygnału		
Cursor	Menu pomiarów kursorowych		
Measure	Menu pomiarów automatycznych		
Trigger	Menu wyzwalania		
Save/Recall	Menu obsługi pamięci		
User	Menu ustawień systemowych		

Tabela 2-1 Menu funkcyjne

Funkcja samonastawności

Podczas pomiarów nieznanych sygnałów, gdy nic nie wiadomo o ich napięciu, zakresie, częstotliwości, parametrów wyzwalania itp., można wykorzystać funkcję samonastawności, która identyfikuje rodzaj sygnału wejściowego i automatycznie ustawia parametry pracy przyrządu, tak aby zapewnić optymalne wyświetlanie badanego przebiegu.

Przykład automatycznego ustawienia oscyloskopu

- 1. Podłączyć sygnał do kanału CH1 lub CH2 i nacisnąć przycisk "Auto".
- 2. Przyrząd SHS800 automatycznie ustawia parametry pracy odpowiednio do charakterystyki sygnału, aby uzyskać na ekranie optymalny obraz obejmujący m.in. wartości szczytowe i okres przebiegu.
- 3. Aby uzyskać żądane rozmiary wyświetlonego przebiegu, użytkownik może ręcznie wyregulować czułość odchylania pionowego i postawę czasu.

Rysunek 2-1 Ustawienia automatyczne

Menu kanałów CH1 i CH2

Aby wejść w menu kanału, należy nacisnąć odpowiednio przycisk "CH1" lub "CH2".

Coupling	BW Limit	Volts/Div	Probe	Next Page
AC	Off	Coarse	1X	Page 1/2

Rysunek 2-2 Menu kanału – str.1

Tabela 2-2 Menu kanałów CH1, CH2 – cz. 1

Орсја	Ustawienie	Opis
Coupling	DC	Sprzężenie stałoprądowe. Obie składowe sygnału (AC+DC) podawane na wejście kanału.
(sprzężenie sygnału wejściowego)	AC	Sprzężenie zmiennoprądowe. Składowa stała DC sygnału blokowana, tłumione sygnały o częstotliwości poniżej 10 Hz.
	GND	Odłączenie sygnału wejściowego.
BW Limit (ogranicznik pasma)	ON	Ograniczenie pasma kanału do 20 MHz w celu redukcji zakłóceń na ekranie; sygnał wejściowy jest filtrowany, aby zredukować szumy i inne niepożądane składowe w.cz.
	OFF	Wyłączenie ogranicznika pasma.
Volts/Div	Coarse	Regulacja zgrubna czułości odchylania. Regulacja ze skokiem w sekwencji 1-2-5.
w V na działkę)	Fine	Zmniejszenie skoku regulacji czułości. Regulacja dokładna.
Probe (sonda)	1X, 5X, 10X, 50X 100X, 500X, 1000X	Współczynniki tłumienia sondy pomiarowej. Ustawienie zgodne z tłumieniem zastosowanej sondy jest niezbędne do prawidłowego odczytu amplitudy.
Next Page	Page 1/2	Przejście do drugiej strony menu kanału CH1/CH2.

Invert			Next Page
Off	Filter	To Zero	Page 2/2

Rysunek 2-3 Menu kanału – str. 2

Tabela 2-3 Menu kanałów CH1, CH2 – cz. 2

Opcja Ustawienie		Opis
Invert	ON	Odwracanie przebiegu włączone.
(odwracanie przebiegu)	OFF	Powrót do wyświetlania oryginalnego przebiegu.
Filter		Podmenu ustawień filtrów cyfrowych.
To Zero		Powrót przebiegu do położenia wyjściowego w pionie i ustawienie poziomu wyzwalania na wartość zero.
Next Page	Page 2/2	Powrót do pierwszej strony menu CH1/CH2.

Fiter	Туре	UppLimit	
On	ta_,f	5.00 MHz	Return

Rysunek 2-4 Menu filtrów cyfrowych

Орсја	Ustawienia	Opis
Digital Filtor	ON	Filtr cyfrowy włączony.
	OFF	Filtr cyfrowy wyłączony.
Type (typ filtra)		LPF - filtr dolnoprzepustowy HPF - filtr górnoprzepustowy BPF - filtr pasmowoprzepustowy BRF - filtr pasmowozaporowy
Upp_limit		Przyciskami nawigacyjnymi "w górę" i "w dół" ustawia się górną częstotliwość graniczną.
Low_limit		Przyciskami nawigacyjnymi "w górę" i "w dół" ustawia się dolną częstotliwość graniczną.
Return		Powrót do głównego menu kanałów CH1/CH2.

Tabela 2-4 Menu filtrów cyfrowych

Przykład zastosowania filtracji cyfrowej

- 1. Podłączyć sygnał do kanału CH1 i nacisnąć przycisk "Auto".
- 2. Nacisnąć przycisk "CH1", aby wejść w menu kanału 1.
- 3. Nacisnąć przycisk "**F5**", aby przejść do drugiej strony menu kanału CH1.
- 4. Nacisnąć przycisk "F3", aby wejść w menu filtrów cyfrowych Filter.
- 5. Wybrać rodzaj filtru, naciskając przycisk "**F2**". Przykładowo, włączyć ogranicznik pasma BW 20M i wybrać ustawianie górnej wartości granicznej filtru **Upp_Limit**.
- 6. Przyciskami nawigacyjnymi "w górę" i "w dół" ustawić pasmo filtru.
- 7. Nacisnąć przycisk "**F1**", aby włączyć filtr cyfrowy.

Rysunek 2-6 Po włączeniu filtra cyfrowego

Menu funkcyjne oscyloskopu

Przycisk "Scope" otwiera poniższe menu funkcyjne:

Acquire	Display	Math	Horizon	Ref

Rysunek 2-7 Menu funkcyjne oscyloskopu

Układ akwizycji sygnału

Aby wejść w menu akwizycji sygnału, nacisnąć przycisk "Scope" i wybrać opcję "Acquire" (rys. 2-8).

Sampling Peak Detect			M Pos Ø < 1	si0.00µs 0Hz
Average		M 25,8ns	CH1.70	ACOUIRE
Acquisition	Averages	Sinok	Mode	Sa Rate
Average	256	Sinx	Real Time	1.000GSa

Rysunek 2-8 Menu układu akwizycji sygnału

Opcja	Ustawienia	Opis
	Sampling	Tryb podstawowy akwizycji. Stosowany do próbkowania i dokładnego zobrazowania na ekranie większości przebiegów.
Acquisition (tryb akwizycji)	Peak Detect	Tryb detekcji szczytowej. Umożliwia detekcję zakłóceń i zmniejsza możliwość pojawienia się przebiegów pozornych (<i>aliasing</i>).
	Average	Tryb uśredniania. Redukuje zakłócenia losowe i nieskorelowane z sygnałem.
Averages	(4, 16, 32, 64, 128, 256)	Wybór liczby cykli akwizycji wykorzystywanych do uśredniania przebiegu.
Sinyly	sinx	Włączenie interpolacji próbek przebiegu krzywą sinc.
SILIX/X	x	Włączenie liniowej interpolacji próbek przebiegu.
Mode	Equ Time Real Time	Ustawienie próbkowania w czasie ekwiwalentnym. Ustawienie próbkowania w czasie rzeczywistym.
Sa Rate		Wyświetlanie częstotliwość próbkowania.

Tabela 2-5 Menu akwizycji sygnału

Sampling: W tym trybie akwizycji oscyloskop próbkuje sygnał w równych odstępach czasu w celu rekonstrukcji przebiegu na ekranie. Taki tryb próbkowania zapewnia dokładne odwzorowanie większości rzeczywistych sygnałów.

Peak Detect: W trybie detekcji szczytowej wychwytywane są wartości maksymalne i minimalne sygnału w każdym przedziale próbkowania.

Average: Tryb, w którym oscyloskop rejestruje dane przebiegu z wielu cykli akwizycji, uśrednia je a wynik uśredniania wyświetla na ekranie. Im więcej uśrednianych cykli akwizycji, tym krzywa przebiegu jest bardziej gładka.

Próbkowanie w czasie ekwiwalentnym (Equ-Time): Przy próbkowaniu w czasie ekwiwalentnym (próbkowanie przypadkowe) można osiągnąć rozdzielczość w osi poziomej do 20 ps (co odpowiada częstości próbkowania 50 GSa/s). Tryb nadaje się do obserwacji przebiegów okresowych (duża liczba cykli o powtarzających się zmianach sygnału).

Próbkowanie w czasie rzeczywistym (Real-Time): Oscyloskop może próbkować sygnał wejściowy w czasie rzeczywistym (próbkowanie sekwencyjne) z częstotliwością do 1 GSa/s.

Przykład zastosowania interpolacji krzywą sinc (Sinx/x)

- 1. Nacisnąć przycisk "Scope" i wybrać opcję "Acquire", aby wejść w menu układu akwizycji.
- 2. Nacisnąć przycisk "F4" i wybrać próbkowanie w czasie rzeczywistym Real Time.
- 3. Nacisnąć przycisk "F3", aby wybrać interpolację krzywą Sinx/x (Sinx).

Rysunek 2-9 Interpolacja krzywą sinc (Sinx)

Rysunek 2-10 Interpolacja liniowa (X)

Ustawienia ekranu

Aby wejść w menu ustawień ekranu, nacisnąć przycisk "**Scope**" i wybrać opcję "**Display**" (rys. 2-11).

Rysunek 2-11 Menu ekranu – cz.1

Opcja	Ustawienia	Opis
Type (format	Vectors	Tryb wektorowy, w którym sąsiednie próbki przebiegu łączone są odcinkami krzywej i przebieg wyświetlany jest w postaci linii ciągłej.
przebiegu)	Dots	Tryb punktowy - przebieg wyświetlany w postaci krzywej punktowej.
Persist (poświata)	Off 1 sec 2 sec 5 sec Infinite	Ustawianie czasu przez jaki wyświetlana jest każda próbka przebiegu: Off (poświata wyłączona); 1, 2, 5 sec (czas poświaty 1, 2, 5 sekund); Infinite (nieskończony czas wy- świetlania).
Intensity	<intensity></intensity>	Ustawianie jaskrawości przebiegu w procentach jaskrawości maksymalnej.
Brightness	<brightness></brightness>	Ustawianie jaskrawości siatki ekranu w procentach jaskra- wości maksymalnej.
Next Page	Page 1/2	Przejście do drugiej strony menu Display .

Tabela 2-6 Menu ustawień ekranu – cz.1

Format	Screen	Grid	Menu Displav	Next Page
ΥT	Normal		Infinite	Page 2/2

Rysunek 2-12 Menu ekranu – cz.2

Tabela 2-7	Menu ustawie	ń ekranu – cz.2
------------	--------------	-----------------

Opcja	Ustawienia	Opis
Format	ΥT	W trybie YT wyświetlana jest krzywa napięcia (oś pionowa) przebiegu w funkcji czasu (oś pozioma).
Format	XY	W trybie XY każdy wyświetlany punkt odpowiada próbce pobranej jednocześnie w kanale 1. i 2.
Scroop	Normal	Normalny tryb pracy ekranu.
Screen	Inverted	Tryb pracy ekranu z inwersją kolorów.
Grid (siatka ekranu)		Wyświetlanie siatki ekranu i osi układu współrzędnych. Wyświetlanie tylko osi układu współrzędnych. Siatka ekranu i osie układu współrzędnych wyłączone.
Menu Display	2sec, 5sec, 10sec, 20sec, Infinite	Ustawienie czasu wyświetlania menu ekranowego w sekundach lub w sposób ciągły ("Infinite").
Next Page	Page 2/2	Powrót do pierwszej strony menu ekranu Display .

Przykład zastosowania trybu XY

Procedura obserwacji przebiegów w trybie XY:

- 1. Na wejścia kanałów podać 2 sygnały o takiej samej częstotliwości i amplitudzie, ale przesunięte w fazie o 90 stopni, a następnie nacisnąć przycisk samonastawności "**Auto**".
- 2. Nacisnąć przycisk "**Scope**" i wybrać opcję "**Display**", aby wejść w menu ustawień ekranu.
- 3. Nacisnąć przycisk opcji "Next Page", aby wejść w drugą część menu Display.
- 4. Nacisnąć przycisk "F1", aby wybrać tryb XY wyświetlania przebiegów.
- 5. Wyregulować skale osi pionowej kanałów CH1 i CH2, aby uzyskać najlepszy kształt krzywej XY.

Rysunek 2-13 Przebieg XY

Operacje matematyczne

Aby wejść w menu operacji matematycznych, nacisnąć przycisk "Scope" i wybrać opcję "Math".

Rysunek 2-14 Menu operacji matematycznych Math – cz.1

Tabela 2-8 Menu funkcji matematycznych – cz.1

Opcja	Ustawienia	Opis	
	+	Sumowanie przebiegów kanałów CH1 i CH2.	
	_	Odejmowanie przebiegów: CH1-CH2, CH2-CH1.	
Operation	*	Mnożenie przebiegów CH1 i CH2.	
	/	Dzielenie przebiegów: CH1/CH2, CH2/CH1.	
	FFT	Szybka transformacja Fouriera.	
Invort	ON	Odwracanie przebiegu matematycznego.	
Invert	OFF	Wyłączenie odwracania przebiegu matematycznego.	
Next Page	Page1/2	Przejście do drugiej strony menu Math.	

Rysunek 2-15 Menu operacji matematycznych Math – cz.2

Tabela 2-9 Menu funkcji matematycznych – cz.2

Opcja	Ustawienia	Opis
-~~‡		Przesuwanie w pionie przebiegu matematycznego przyciskami nawigacyjnymi.
$\sim \sim$		Regulacja amplitudy przebiegu matematycznego przyciskami nawigacyjnymi.
Włącznik przebiegów	ON	Włączenie wyświetlania przebiegu matematycznego.
matematycznych	OFF	Wyłączenie wyświetlania przebiegu matematycznego.
Next Page	Page2/2	Powrót do pierwszej strony menu Math.

Przykład operacji matematycznych na przebiegach

Procedura dodawania dwóch przebiegów:

- 1. Na wejścia kanałów podać 2 sygnały i nacisnąć przycisk samonastawności "Auto".
- 2. Nacisnąć przycisk "**Scope**" i wybrać opcję "**Math**", aby wejść w menu operacji matematycznych.
- 3. Nacisnąć przycisk "**F1**" i wybrać działanie "+".
- 4. Nacisnąć przycisk "F5", aby przejść do drugiej części menu operacji matematycznych.
- 5. Używając przycisków opcji – i – i – oraz przycisków nawigacyjnych, wyregulować położenie przebiegu i skalę osi pionowej, aby uzyskać najlepszy kształt krzywej przebiegu matematycznego.
- 6. Aby wyjść z trybu operacji matematycznych, nacisnąć przycisk "F4".

Rysunek 2-16 Wynik operacji dodawania dwóch przebiegów

Szybka transformacja Fouriera FFT

Transformacja FFT przekształca sygnał wyświetlany w dziedzinie czasu na jego obraz w dziedzinie częstotliwości (widmo).

Operation	Source	Window	FFT Zoom	Next Page
FFT	CH1	Hanning	1X	Page 1/2

Rysunek 2-17 Menu funkcji FFT – cz.1

Scale	Display			Next Page
dBVrms	Split	ToZero	On	Page 2/2

Tabela 2-10 Charakterystyka okien czasowych funkcji FFT

Typ okna	Charakterystyka	Odpowiednie do pomiarów
Rectangular	Najlepsza rozdzielczość częstotliwości ale najgorsza rozdzielczość amplitudy. Zasadniczo widmo FFT jest takie samo jak wy- świetlane bez okna czasowego.	Zakłócenia symetryczne o charakterze impulsowym. Przebiegi sinusoidalne o stałej amplitudzie i częstotliwości. Sze- rokopasmowy szum tła z relatywnie wolno zmieniającym się widmem.
Hanning	Lepsza niż w oknie Rectangle do- kładność częstotliwości a gorsza amplitudy.	Sinusoidalny, okresowy i wąskopasmowy szum o charakterze przypadkowym.
Hamming	Okno ma nieznacznie lepszą roz- dzielczość częstotliwości niż okno Hanninga.	Asymetryczne zakłócenia o charakterze impulsowym lub paczek impulsów. Ampli- tuda sygnałów z zakłóceniami i bez znacznie się różni.
Blackmann	Najlepsza rozdzielczość amplitudy ale najgorsza częstotliwości.	Przebiegi o jednej częstotliwości, detekcja harmonicznych wyższych rzędów.

FFT Zoom: rozciąg widma przebiegu w pionie w stosunku: 1X, 2X, 5X i 10X.

Scale: opcja wyboru jednostek amplitudy widma między dBVrms a Vrms.

Display: wybór sposobu wyświetlania widma między opcją **Full Screen** (widmo wyświetlane w pełnym oknie ekranu) a opcją **Split** (podział ekranu na dwa okna – w jednym wyświetlany przebieg Yt, a w drugim – widmo przebiegu).

Przykład operacji FFT na przebiegu

- 1. Na wejście kanału CH1 podać badany sygnał i nacisnąć przycisk samonastawności "Auto".
- 2. Nacisnąć przycisk "Scope" i wybrać opcję "Math", aby wejść w menu operacji matematycznych.
- 3. Nacisnąć przycisk "F1" i wybrać opcję FFT.
- 4. Nacisnąć przycisk "F5", aby przejść do drugiej części menu i dokonać odpowiednich ustawień.
- 5. Ustawić jednostki amplitudy, położenie widma FFT w pionie i skalę osi pionowej.
- 6. Aby wyjść z trybu operacji matematycznych, nacisnąć przycisk "F5".

Rysunek 2-19 Widmo FFT przebiegu wejściowego

Układ odchylania poziomego

Aby wejść w menu odchylania poziomego, nacisnąć przycisk "Scope" i wybrać opcję "Horizontal".

Rysunek 2-20 Menu układu odchylania poziomego

Delayed: rozciąg odcinka przebiegu w osi poziomej (ON).

MemDepth: wybór wielkości pamięci akwizycji między **Normal** (pamięć standardowa) a **Long Mem** (pamięć rozszerzona).

Przykład rozciągu przebiegu w poziomie (Delayed Scan)

- 1. Na wejście kanału CH1 lub CH2 podać badany sygnał.
- 2. Dobrać podstawę czasu dla uzyskania najlepszego obrazu przebiegu.
- 3. Nacisnąć przycisk **"Scope**" i wybrać opcję **"Horizontal**", aby wejść w menu ustawień układu odchylania poziomego.
- 4. Nacisnąć przycisk "**F1**", aby włączyć opóźnioną podstawę czasu (ON).
- 5. Zmienić podstawę czasu i wybrać odcinek przebiegu (w górnej części okna), który ma być rozciągnięty w poziomie i analizowany.
- 6. Aby wyłączyć tryb rozciągu przebiegu w poziomie, nacisnąć przycisk "F1".

Rysunek 2-21 Rozciąg odcinka przebiegu w poziomie

Przykład akwizycji przebiegu w czasie rzeczywistym ze standardową i rozszerzoną pamięcią

- Na wejście kanału CH1 lub CH2 podać sygnał sinusoidalny o paśmie 100 MHz i amplitudzie 4 Vpp. ustawić podstawę czasu na 50 ns. Częstość próbkowania przy pamięci standardowej będzie wynosiła 1 GSa/s, a przy pamięci rozszerzonej – 500 MSa/s.
- 2. Nacisnąć przycisk "Run/Stop" odpowiednio przy ustawionej pamięci Normal i Long Mem.
- 3. Zmienić podstawę czasu tak, aby cała zawartość pamięci akwizycji została wyświetlony na ekranie.
- 4. Obliczyć pojemność pamięci w obu przypadkach z zależności: Liczba próbek = Częstość próbkowania x Czas próbkowania.

Rysunek 2-22 Przebieg zarejestrowany w pamięci standardowej (Normal)

Rysunek 2-23 Przebieg zarejestrowany w pamięci rozszerzonej (Long Mem)

Przebiegi odniesienia

Aby wejść w menu przebiegów odniesienia, nacisnąć przycisk "Scope" i wybrać opcję "Ref".

Rysunek 2-24 Menu przebiegów odniesienia

Tabela 2-11 Menu przebiegów odniesienia REF

Орсја	Ustawienia	Opis
Source	CH1 / CH2	Wybór przebiegu, który ma być zapisany jako przebieg odniesienia.
REF A/REF B		Wybór pamięci do zapisu lub odczytu przebiegu referencyjnego.
Save		Zapis przebiegu do wybranej pamięci referencyjnej.
REF A/ REF B	ON OFF	Odtworzenie przebiegu referencyjnego na ekranie. Wyłączenie wyświetlania przebiegu odniesienia.

Przykład obsługi funkcji przebiegów odniesienia

- 1. Na wejście kanału CH1 lub CH2 podać badany sygnał.
- 2. Dobrać podstawę czasu dla uzyskania najlepszego obrazu przebiegu.
- 3. Nacisnąć przycisk "Scope" i wybrać opcję przebiegów referencyjnych "Ref".
- 4. Wybrać pamięć referencyjną, w której ma być zapisany przebieg wejściowy, i zapisać przebieg w pamięci, naciskając przycisk "**F4**".
- 5. Nacisnąć przycisk "F5", aby wyświetlić na ekranie zachowany w pamięci przebieg odniesienia.
- 6. Nacisnąć ponownie przycisk "**F5**", aby wyłączyć wyświetlanie przebiegu odniesienia.

Rysunek 2-25 Przebieg odniesienia REF A

Pomiary sygnału

Pomiary kursorowe

Aby wejść w menu pomiarów kursorowych, nacisnąć jeden raz przycisk "Cursor/Measure".

Pomiary kursorowe można wykonywać w trzech trybach: ręcznym (Manual), śledzenia (Track) i automatycznym (Auto).

Mode	Туре	Source	Cur A	Cur B
Manual	Voltage	CH1	¢	+

Rysunek 2-26 Menu ręcznych pomiarów kursorowych

Fabela 2-12	Menu ręcznyc	h pomiarów	kursorowych	(Manual)
-------------	--------------	------------	-------------	----------

Opcja	Ustawienia	Opis	
Mode	Manual	Tryb ręcznego ustawiania kursorów do pomiarów parametró X i Y przebiegu.	
Type (rodzaj kursorów)	Voltage Time	Kursory do pomiaru parametrów napięciowych sygnału. Kursory do pomiaru parametrów czasowych sygnału.	
Source (źródło sygnału)	CH1, CH2 MATH REFA, REFB	Ustawienie źródła sygnału do pomiarów kursorowych.	
Cur A		Po wybraniu tej opcji przyciskami nawigacyjnymi ustala się położenie kursora A.	
Cur B 🗢		Po wybraniu tej opcji przyciskami nawigacyjnymi ustala się położenie kursora B.	

Tryb śledzenia (Track): W tym trybie pomiarów na ekranie wyświetlane są dwa kursory krzyżowe. Kursor krzyżowy ustawia się automatycznie na przebiegu. Użytkownik może przesuwać kursor po krzywej przebiegu w osi poziomej przyciskami nawigacyjnymi. W górnej części ekranu oscyloskop wyświetla wartość napięcia i czasu pozycji kursorów.

Mode	Cursor A	Cursor B	CurA	Cur B
Track	CH1	CH1	\Rightarrow	+

Rysunek 2-27 Menu pomiarów kursorowych w trybie śledzenia

 Tabela 2-13
 Menu pomiarów kursorowych w trybie śledzenia (Track)

Opcja	Ustawienia	Opis	
Mode	Track	Ustawienie pomiarów kursorowych w trybie śledzenia.	
Cursor A	CH1, CH2 NONE	Jstawienie kanału wejściowego, którego sygnał ma być nierzony kursorem A.	
Cursor B	CH1, CH2 NONE	Ustawienie kanału wejściowego, którego sygnał ma być mierzony kursorem B.	
Cur A		Po wybraniu tej opcji przyciskami nawigacyjnymi ustala się położenie kursora A.	
Cur B		Po wybraniu tej opcji przyciskami nawigacyjnymi ustala się położenie kursora B.	

Przykład pomiarów kursorowych w trybie śledzenia

Procedura:

- 1. Nacisnąć jeden raz przycisk "Cursor/Measure", aby wejść w menu kursorów.
- 2. Nacisnąć przycisk "**F1**", aby wybrać tryb śledzenia **Track**.
- 3. Przyciskami nawigacyjnymi ustawić kursory A i B w żądnych punktach przebiegu.

Rysunek 2-28 Pomiary kursorowe w trybie śledzenia

Tryb automatyczny (Auto): W tym trybie pomiary wykonywane są automatycznie. Na ekranie wyświetlone zostają kursory i automatycznie dokonywany jest pomiar. Kursory służą do prezentacji fizycznei postaci mierzonych parametrów.

Przykład pomiarów kursorowych w trybie automatycznym

Procedura:

- 1. Nacisnąć jeden raz przycisk "Cursor/Measure", aby wejść w menu kursorów.
- 2. Nacisnąć przycisk "F1", aby wybrać tryb automatyczny Auto.
- 3. Nacisnąć przycisk "Cursor/Measure" ponownie i wybrać parametr, który ma być mierzony.

Rysunek 2-29 Pomiary kursorowe w trybie automatycznym

Pomiary parametrów sygnału

Aby wejść w menu pomiarów zdefiniowanych parametrów sygnału, nacisnąć dwukrotnie przycisk *"***Cursor/Measure**" i przyciskami **F1** do **F5** wybrać rodzaj mierzonych parametrów.

Voltage	Time	Delay	AllMea	Return

Tabela 2-14 Menu pomiarów parametrów sygnału

Opcja	Opis
Voltage	Nacisnąć przycisk, aby wejść w menu pomiaru parametrów napięciowych.
Time	Nacisnąć przycisk, aby wejść w menu pomiaru parametrów czasowych.
Delay	Nacisnąć przycisk, aby wejść w menu pomiarów parametrów opóźnieniowych.
All Mea	Nacisnąć przycisk, aby wejść w menu pomiarów wszystkich parametrów.
Return	Nacisnąć przycisk, aby wrócić do głównej strony menu Measure.

Pomiary parametrów napięciowych

Source	Туре	1.DD	
CH1	Vpp	120.0mV	Return

Rysunek 2-31 Menu pomiarów parametrów napięciowych sygnału

Opcja	Ustawienia	Opis
Source	CH1, CH2	Ustawienie kanału CH1 lub CH2 jako źródła sygnału do pomiarów napięciowych.
Туре	Vmax, Vmin, Vpp, Vamp, Vtop, Vbase, Vavg, Mean, Vrms, FOV, FPRE, ROV, RPRE	Po naciśnięciu przycisku " F2 " przyciskami kierunkowymi wybiera się parametry napię- ciowe sygnału.
		Wyświetlana ikona i wartość pomiaru wy- branego parametru napięciowego sygnału.
Return		Powrót do głównej strony menu Measure.

 Tabela 2-15
 Menu pomiarów parametrów napięciowych

Pomiary parametrów czasowych

Rysunek 2-32 Menu pomiarów parametrów czasowych sygnału

Tabela 2-16 Menu pomiarów parametrów czasowych

Opcja	Ustawienia	Opis
Source	CH1, CH2	Ustawienie kanału CH1 lub CH2 jako źródła sygnału do pomiarów czasowych.
Туре	Period, Freq, +Wid, -Wid, Rise Time, Fall Time, BWid, +Dut, -Dut	Po naciśnięciu przycisku opcji "Type" przyci- skami nawigacyjnymi wybiera się parametry czasowe sygnału.
		Wyświetlana ikona i wartość pomiaru wybra- nego parametru czasowego sygnału.
Return		Powrót do głównej strony menu Measure.

Pomiary parametrów opóźnieniowych

Rysunek 2-33 Menu pomiarów parametrów opóźnieniowych sygnału

Opcja	Ustawienia	Opis
Source	CH1, CH2	Ustawienie kanału CH1 lub CH2 jako źródła sygnału do pomiarów opóźnieniowych.
Туре	Phase, FRR, FRF, FFR, FFF, LRR, LRF, LFR, LFF	Po naciśnięciu przycisku opcji "Type" przyci- skami nawigacyjnymi wybiera się parametry opóźnieniowe sygnału.
		Wyświetlane ikony i wartości pomiaru wy- branych parametrów opóźnieniowych sygnału
Return		Powrót do głównej strony menu Measure.

Tabela 2-17	Menu	pomiarów	opóźnieniow	vch
		pomaron	00021110111011	,

Pomiary wszystkich parametrów sygnału

Source	Voltage	Time	Delay	
CH1	On	On	On	Return

Rysunek 2-34	Menu	pomiarów wszy	ystkich	parametrów sygnału
Nysunek 2-54	ricitu		ySURICII	parametrow sygnam

Tahela 2-18	Menu nomiarów v	wszystkich	narametrów	svanału
	menu pomarow v	<i>wszyst</i> kich	parametrow	sygnatu

Opcja	Ustawienia	Opis
Source	CH1, CH2	Ustawienie kanału CH1 lub CH2 jako źródła mierzonego sygnału.
Voltage	On / Off	Włączenie/wyłączenie pomiarów wszystkich parametrów napię- ciowych sygnału.
Time	On / Off	Włączenie/wyłączenie pomiarów wszystkich parametrów czaso- wych sygnału.
Delay	On / Off	Włączenie/wyłączenie pomiarów wszystkich parametrów opóźnieniowych sygnału.
Return		Powrót do głównej strony menu Measure.

Tabela 2-19	Zestawienie	rodzajóv	v mierzony	/ch	parametrów
				-	

Parametr	Opis
T Vmax	Maksymalne napięcie szczytowe.
La Vmin	Minimalne napięcie szczytowe.
IN Vpp	Bezwzględna wartość różnicy między maksymalnym i minimalnym napię- ciem szczytowym.
᠋᠊᠋ᡜᢆᠼᡗᡊᢪᢏ᠊ _{ᢂtop}	Napięcie maksymalne w całym mierzonym przebiegu.
≝[רנ_[רנ_י- Vbase	Napięcie minimalne w całym mierzonym przebiegu.
	Różnica napięcia między napięciem Vtop a Vbase przebiegu.

±∽∽∽ _{Vavg}	Średnia arytmetyczna napięcia w pierwszym okresie mierzonego przebiegu.
Mean	Średnia arytmetyczna napięcia w całym mierzonym przebiegu.
<u>ჭ</u> ეტი ^{Cums}	Wielkość wirtualna: wartość skuteczna napięcia w pierwszym okresie mierzonego przebiegu.
Vrms	Rzeczywista wartość skuteczna napięcia w całym mierzonym przebiegu.
ROVShoot	Przerost napięcia po zboczu narastającym przebiegu definiowany zależ- nością (Vmax-Vtop)/Vamp.
FOVShoot	Przerost napięcia po zboczu opadającym przebiegu definiowany zależ- nością (Vmin-Vbase)/Vamp.
RPREShoot	Przedrost napięcia przed zboczem narastającym przebiegu definiowany zależnością (Vmin-Vbase)/Vamp.
FPREShoot	Przedrost napięcia przed zboczem opadającym przebiegu definiowany zależnością (Vmax-Vtop)/Vamp.
Rise Time	Czas narastania definiowany jako czas, w którym napięcie pierwszego zbocza narastającego sygnału wzrasta od 10% do 90% jego amplitudy.
← ↔\$<── Fall Time	Czas opadania definiowany jako czas, w którym napięcie pierwszego zbocza opadającego sygnału maleje od 90% do 10% jego amplitudy.
BWid	Czas trwania paczki impulsów mierzony w całym przebiegu.
+Wid	Szerokość impulsu dodatniego definiowana jako czas między pierwszym zboczem narastającym i najbliższym zboczem opadającym przebiegu mierzony w połowie jego amplitudy.
₩id	Szerokość impulsu ujemnego definiowana jako czas między pierwszym zboczem opadającym i najbliższym zboczem narastającym przebiegu mierzony w połowie jego amplitudy.
_ f_t _ +Duty	Dodatni współczynnik wypełnienia przebiegu definiowany jako stosunek szerokości pierwszego impulsu dodatniego do okresu.
	Ujemny współczynnik wypełnienia przebiegu definiowany jako stosunek szerokości pierwszego impulsu ujemnego do okresu.
M Phase	Przesunięcie fazowe między dwoma przebiegami.
	Różnica czasu między pierwszym zboczem narastającym sygnału ze źró- dła 1 a pierwszym zboczem narastającym sygnału ze źródła 2.
≝¯ 」₽⊾_」⊂FRF	Różnica czasu między pierwszym zboczem narastającym sygnału ze źró- dła 1 a pierwszym zboczem opadającym sygnału ze źródła 2.
_耳 ℲჀյႠ⊾FFR	Różnica czasu między pierwszym zboczem opadającym sygnału ze źródła 1 a pierwszym zboczem narastającym sygnału ze źródła 2.
_J₽ _J₽ FFF	Różnica czasu między pierwszym zboczem opadającym sygnału ze źródła 1 a pierwszym zboczem opadającym sygnału ze źródła 2.
≝T JT.≇T. LRR	Różnica czasu między pierwszym zboczem narastającym sygnału ze źró- dła 1 a ostatnim zboczem narastającym sygnału ze źródła 2.
≝⊓ ┛┖ _┙ Ĵ╇╴ _{LRF}	Różnica czasu między pierwszym zboczem narastającym sygnału ze źró- dła 1 a ostatnim zboczem opadającym sygnału ze źródła 2.
_ॠ _┖,≇┖ LFR	Różnica czasu między pierwszym zboczem opadającym sygnału ze źródła 1 a ostatnim zboczem narastającym sygnału ze źródła 2.
_₽ ┛┖ѧ₽ҍ _{╘FF}	Różnica czasu między pierwszym zboczem opadającym sygnału ze źródła 1 a ostatnim zboczem opadającym sygnału ze źródła 2.

Przykład pomiaru wybranego parametru sygnału

Procedura:

- 1. Nacisnąć dwukrotnie przycisk "**Cursor/Measure**" i przyciskiem **F1** do **F5** wejść w menu pomiaru żądanych parametrów.
- Nacisnąć odpowiedni przycisk od "F1" do "F5" aby wybrać rodzaj mierzonego parametru, np. Voltage (parametr napięciowy).
- 3. Nacisnąć przycisk "F2", aby wybrać żądany parametr, np. Vpp.
- 4. Nacisnąć przycisk "**F5**", aby wrócić do poprzedniego menu.

Rysunek 2-35 Pomiar wybranych parametrów sygnału

Przykład pomiaru wszystkich 32 parametrów sygnału

- 1. Na wejścia kanałów CH1 i CH2 podać dwa sygnały o tej samej częstotliwości i amplitudzie, ale o różnych fazach.
- 2. Wyregulować czułość kanałów i podstawę czasu, aby uzyskać najlepszy obraz przebiegów.
- 3. Nacisnąć przycisk "Cursor/Measure" i wybrać opcję All.
- 4. Włączyć (On) opcje **Voltage**, **Time** i **Delay**, aby na ekranie ukazał się wynik pomiaru 32 parametrów sygnału.

Rysunek 2-36 Pomiar 32 parametrów sygnału

Układ wyzwalania

W przyrządzie jest 5 rodzajów wyzwalania: zboczem (Edge), szerokością impulsów (Pulse), sygnałem TV (Video), nachyleniem zbocza (Slope) i wyzwalanie przemienne (Alternative).

Wyzwalanie zboczem Edge

Туре	Source	Slope	Mode	
Edge	CH1	-f	Auto	Set Up

Rysunek 2-37	Menu wyzwalania	zboczem Edge
--------------	-----------------	--------------

Tabela 2-20	Menu wy	yzwalania	zboczem	sygnału	Edge

Opcja	Ustawienia	Opis
Туре	Edge	Wyzwalanie oscyloskopu na zboczu narastającym lub opadają- cym sygnału wejściowego.
Source	CH1, CH2	Wybór kanału CH1 lub CH2 jako źródła sygnału wyzwalania.
Slope	 ↓↓	Wyzwalanie na zboczu narastającym. Wyzwalanie na zboczu opadającym. Wyzwalanie zarówno na zboczu wyzwalającym, jak i opadającym sygnału wyzwalającego.
Mode (tryb wyzwalania)	Auto	Układ akwizycji pracuje nawet przy braku impulsów wyzwala- jących. Tryb ten umożliwia niesynchronizowaną pracę ze ska- nowaniem przebiegu wejściowego przy podstawie czasu 100 ms/dz i wolniejszych.
	Normal	Układ akwizycji zbiera dane sygnału dopiero po pojawieniu się impulsu wyzwalającego. Do momentu wykrycia pierwszego zdarzenia wyzwalającego ekran pozostaje ciemny – nie jest wyświetlany żaden przebieg.
	Single	Jednorazowy cykl akwizycji po pojawieniu się impulsu wyzwa- lającego. Tryb rejestracji sygnałów jednorazowych po naciśnię- ciu przycisku "SINGLE".
Set up		Wejście w podmenu ustawień wyzwalania (tabela 2-21).

Coupling	Holdoff	Holdoff	
DC		Reset	Return

Rysunek 2-38 Menu ustawień układu wyzwalania

Орсја	Ustawienia	Opis
	DC	Stałoprądowe – przepuszczane wszystkie składowe sygnału.
Coupling	AC	Zmiennoprądowe – blokowana składowa stała i tłumione skła- dowe o częstotliwości poniżej 170 Hz.
(sprzężenie wyzwalania)	HF Reject	Filtr dolnoprzepustowy – blokowane składowe o częstotliwości powyżej 140 kHz.
	LF Reject	Filtr górnoprzepustowy – blokowana składowa stała i składowe o częstotliwości poniżej 7 kHz.
Hold off		Ustawianie przyciskami nawigacyjnymi czasu podtrzymania (s) układu akwizycji. Ustawiona wartośc jest wyświetlana na ekranie.
Hold off Reset		Resetowanie czasu podtrzymania do wartości domyślnej 100 ns.
Return		Powrót do pierwszej strony głównego menu wyzwalania.

Tabela 2-21	Podmenu	ustawień	układu	wyzwa	lania

Rysunek 2-39 Wyzwalanie zboczem narastającym sygnału

Wyzwalanie szerokością impulsów Pulse

Туре	Source	When	SetWidth	Next Page
Pulse	CH1	−₽	860µs	Page 1/2

Opcja	Ustawienia	Opis
Туре	Pulse	Ustawienie wyzwalania impulsami sygnału, które spełniają ustalony warunek wyzwalania.
Source	CH1, CH2	Wybór źródła sygnału wyzwalającego.
When (warunek wyzwolenia)		 Wyzwolenie następuje, gdy: szerokość impulsu "+" jest mniejsza niż wartość ustawiona, szerokość impulsu "+" jest większa niż wartość ustawiona, szerokość impulsu "+" jest równa wartości ustawionej, szerokość impulsu "-" jest mniejsza niż wartość ustawiona, szerokość impulsu "-" jest większa niż wartość ustawiona, szerokość impulsu "-" jest równa wartości ustawionej.
Set Width	20.0ns ~ 10.0s	Po wybraniu tej opcji przyciskami nawigacyjnymi ustawia się szerokość impulsu odniesienia dla warunku wyzwolenia.
Next Page	Page 1/2	Przejście do drugiej strony menu.

Tabela 2-22 Menu wyzwalania szerokością impulsów Pulse – cz.1

Туре	Mode		Next Page
Pulse	Auto	Set Up	Page 2/2

Rysunek 2-41	Menu wyzwalani	a szerokością	impulsów – cz.2
--------------	----------------	---------------	-----------------

Орсја	Ustawienia	Opis
Туре	Pulse	Ustawienie wyzwalania impulsami sygnału, które spełniają ustalony warunek wyzwalania.
Mode	Auto Normal Single	Wybór trybu wyzwalania. W przypadku wyzwalania szerokością impulsów najlepszym trybem wyzwalania jest tryb Normal.
Set up		Wejście w podmenu ustawień wyzwalania (patrz tabela 2-21).
Next Page	Page 2/2	Po naciśnięciu przycisku powrót do pierwszej strony menu.

Przykład ustawień wyzwalania szerokością impulsów

Procedura:

- 1. Na wejście oscyloskopu podać sygnał impulsowy.
- 2. Nacisnąć przycisk "**Trigger**", aby wejść w menu wyzwalania.
- 3. Nacisnąć przycisk "F1", aby wybrać wyzwalanie szerokością impulsów Pulse.
- 4. Nacisnąć przycisk "**F3**", aby ustawić warunki wyzwalania.
- 5. Nacisnąć przycisk "F4" i przyciskami nawigacyjnymi ustawić szerokość impulsu odniesienia.
- 6. Przyciskami nawigacyjnymi "w górę" i "w dół" ustawić linię poziomu wyzwalania. Układ akwizycji zostanie wyzwolony, jak tylko sygnał wejściowy spełni warunki wyzwolenia.

Note:

Nie można regulować poziomu wyzwalania w menu **SetWidth**, gdyż w tym przypadku przyciski "w górę" i "w dół" używane są do ustawienia szerokości impulsu odniesienia. Jeżeli chce się ustawić poziom wyzwalania, trzeba wyjść z menu **SetWidth**.

Rysunek 2-42 Wyzwalanie szerokością impulsu

Wyzwalanie sygnałem wizyjnym Video

Туре	Source	Polarity	Sync	Next Page
Video	CH1	Τ	AllLines	Page 1/2

Rysunek 2-43	Menu w	vzwalania	sygnałem	wizyjnym	- cz.1

Tabela 2-24 Menu wyzwalania sygnałem wizyjnym Video – cz.1

Opcja	Ustawienia	Opis
Туре	Video	Po wybraniu wyzwalania Video ustawić sprzężenie wy- zwalania na AC, wtedy oscyloskop będzie można wyzwalać sygnałami wizyjnymi standardu NTSC, PAL i SECAM.
Source	CH1, CH2	Ustawienie źródła sygnału wyzwalającego.
Polarity (polaryzacja impul- sów wyzwalających)	Л	Polaryzacja normalna – wyzwalanie ujemnym zboczem impulsów synchronizacji.
	Л	Polaryzacja odwrotna – wyzwalanie dodatnim zboczem impulsów synchronizacji.
Sync	All Lines Line Num Odd field Even field	Wyzwalanie każdą linią sygnału. Wyzwalanie wybraną linią sygnału. Wyzwalanie półobrazami nieparzystymi. Wyzwalanie półobrazami parzystymi.
Next Page	Page 1/2	Przejście do drugiej strony menu Video.

Туре	Standard	Mode		Next Page
Video	NTSC	Auto	Set Up	Page 2/2

Rysunek 2-44 Menu wyzwalania sygnałem wizyjnym – cz.2

Opcja	Ustawienia	Opis	
Туре	Video	Po wybraniu wyzwalania Video ustawić sprzężenie wyzwala na AC, wtedy oscyloskop będzie można wyzwalać sygnałami wizyjnymi standardu NTSC, PAL i SECAM.	
Standard	NTSC PAL / SECAM	Wybór standardu sygnału TV charakteryzowanego przez im- pulsy synchronizacji i liczbę linii sygnału.	
	Auto	Układ akwizycji pracuje nawet przy braku impulsów wyzwa- lających. Tryb ten umożliwia niesynchronizowaną pracę ze skanowaniem przebiegu wejściowego przy podstawie czasu 100 ms/dz i wolniejszych.	
Mode (tryb wyzwalania)	Normal	Układ akwizycji zbiera dane sygnału dopiero po pojawieniu się impulsu wyzwalającego. Do momentu wykrycia pierwszego zdarzenia wyzwalającego ekran pozostaje ciemny – nie jest wyświetlany żaden przebieg.	
	Single	Jednorazowy cykl akwizycji po pojawieniu się impulsu wy- zwalającego. Tryb rejestracji sygnałów jednorazowych po naciśnięciu przycisku "SINGLE".	
Set up		Wejście w podmenu ustawień wyzwalania (patrz tabela 2-21).	
Next Page	Page 2/2	Powrót do pierwszej strony menu wyzwalania Video.	

Tabela 2-25 Menu wyzwalania sygnałem wizyjnym Video – cz.2

Przykład ustawień wyzwalania sygnałem wizyjnym

Procedura:

- 1. Na wejście oscyloskopu podać sygnał wizyjny.
- 2. Nacisnąć przycisk "**Trigger**", aby wejść w menu wyzwalania.
- 3. Nacisnąć przycisk "F1" i wybrać wyzwalanie sygnałem wizyjnym Video.
- 4. Nacisnąć przycisk "F5", aby przejść do drugiej części menu wyzwalania Video.
- 5. Nacisnąć przycisk "F2" i ustawić standard TV sygnału wejściowego PAL/SECAM lub NTSC.
- 6. Nacisnąć przycisk "F5", aby wrócić do pierwszej części menu wyzwalania Video.
- 7. Nacisnąć przycisk "**F4**" i ustawić typ wyzwalania **Sync**. Jeżeli wybrana zostanie opcja **Line Num**, przyciskami nawigacyjnymi "w górę" i "w dół" ustawić numer linii wyzwalającej.
- 8. Przyciskami nawigacyjnymi "w górę" i "w dół" ustawić linię poziomu wyzwalania.

Note:

Nie można regulować poziomu wyzwalania w menu **Line Num**, gdyż w tym przypadku przyciski "w górę" i "w dół" używane są do ustawienia numeru linii sygnału TV, którą ma być wyzwalany układ akwizycji. Jeżeli chce się ustawić poziom wyzwalania, trzeba wyjść z menu **Line Num**.

Rysunek 2-45 Wyzwalanie sygnałem wizyjnym

Wyzwalanie nachyleniem zbocza Slope

Туре	Source	When	Time	Next Page
Slope	CH1	_+)←	1.08ms	Page 1/2

Tabela 2-26	Menu w	yzwalania n	achyleniem	zbocza	Slope – o	cz.1
-------------	--------	-------------	------------	--------	-----------	------

Орсја	Ustawienia	Opis
Туре	Slope	Wyzwalanie następuje na zboczu narastającym lub opadającym sygnału odpowiednio do ustawionego czasu odniesienia.
Source	CH1, CH2	Ustawienie źródła sygnału wyzwalającego.
When (warunek wyzwolenia)	뷡뷡븿븮뚢 ᆙᆍ╔┲╫	 Wyzwolenie następuje, gdy: - czas narastania jest większy niż ustawiony czas odniesienia, - czas narastania jest mniejszy niż ustawiony czas odniesienia, - czas narastania jest równy wartości czasu odniesienia, - czas opadania jest większy niż ustawiony czas odniesienia, - czas opadania jest mniejszy niż ustawiony czas odniesienia, - czas opadania jest mniejszy niż ustawiony czas odniesienia, - czas opadania jest równy wartości czasu odniesienia,
Time	← <czas></czas>	Ustawianie przyciskami nawigacyjnymi czasu odniesienia dla warunku wyzwolenia w zakresie 20 ns $\sim 10~{\rm s}.$
Next Page	Page 1/2	Przejście do drugiej strony menu Slope .

Rysunek 2-47 Menu wyzwalania nachyleniem zbocza – cz.2

Орсја	Ustawienia	Opis
Туре	Slope	Wyzwalanie następuje na zboczu narastającym lub opadającym sygnału odpowiednio do ustawionego czasu odniesienia.
Vertical (poziomy wyzwalania)		Wybór poziomów wyzwalania, które można ustawiać przyciskami nawigacyjnymi. Można niezależnie ustawiać poziom A ("LEVEL A") i poziom B ("LEVEL B") lub ustawiać je jednocześnie.
	Auto	Układ akwizycji pracuje nawet przy braku impulsów wyzwalających. Tryb ten umożliwia niesynchronizowaną pracę ze skanowaniem przebiegu wejściowego przy podstawie czasu 100 ms/dz i wolniej- szych.
Mode (tryb wyzwalania)	Normal	Układ akwizycji zbiera dane sygnału dopiero po pojawieniu się im- pulsu wyzwalającego. Do momentu wykrycia pierwszego zdarzenia wyzwalającego ekran pozostaje ciemny – nie jest wyświetlany żaden przebieg.
	Single	Jednorazowy cykl akwizycji po pojawieniu się impulsu wyzwalają- cego. Tryb rejestracji sygnałów jednorazowych po naciśnięciu przy- cisku "SINGLE".
Set up		Wejście w podmenu ustawień wyzwalania (patrz tabela 2-14).
Next Page	Page 2/2	Powrót do pierwszej strony menu wyzwalania Video.

 Tabela 2-27
 Menu wyzwalania nachyleniem zbocza Slope – cz.2

Wyzwalanie przemienne Alternative

Po ustawieniu wyzwalania przemiennego źródłem wyzwalania są sygnały obu kanałów wejściowych. W tym trybie wyzwalania można jednocześnie obserwować dwa nieskorelowane sygnały. W trybie Alternative można ustawiać niezależne rodzaje i warunki wyzwalania dla każdego z kanałów. Dostępne rodzaje wyzwalania to: Edge, Pulse, Slope i Video. Wartość poziomu wyzwalania obu kanałów będzie wyświetlana w prawej dolnej części ekranu.

Туре	Source	Mode	Slope	
Alternative	CH1	Edge	<u>_</u>	Set Up

Opcja	Ustawienia	Opis
Туре	Alternative	Po ustawieniu wyzwalania przemiennego, źródłem wyzwalania są sygnały obu kanałów wejściowych. W tym trybie wyzwalania można jednocześnie obserwować dwa nieskorelowane sygnały.
Source (źródło)	CH1 CH2	Ustawienie rodzaju i warunków wyzwalania dla kanału CH1. Ustawienie rodzaju i warunków wyzwalania dla kanału CH2.
Mode	Edge Pulse Video Slope	Ustawienie rodzaju wyzwalania wybranego kanału wejściowego.
Slope (zbocze wyzwalające)	_∱ ₹_ †↓	Wyzwalanie na zboczu narastającym. Wyzwalanie na zboczu opadającym. Wyzwalanie zarówno na zboczu wyzwalającym, jak i opadającym sygnału wyzwalającego.
Set up		Wejście w podmenu ustawień wyzwalania (patrz tabela 2-21).

 Tabela 2-28
 Menu wyzwalania Edge przy wyzwalaniu Alternative

System pamięci

Funkcja pamięci oscyloskopu SHS800 pozwala na zachowywanie w pamięci wewnętrznej i odtwarzanie do 20 kompletów ustawień przyrządu, 2 przebiegów odniesienia i 10 przebiegów wejściowych. Port USB Host na panelu czołowym przyrządu umożliwia zapis danych ustawień, przebiegów, zrzutów ekranu i plików tekstowych CSV w zewnętrznej pamięci USB typu flash. Ustawienia zachowywane są w plikach z rozszerzeniem SET, a dane przebiegu – w plikach z rozszerzeniem DAV. Zachowane przebiegi mogą być odtworzone na bieżącym oscyloskopie lub na innych oscyloskopach tego samego typu. Dane obrazowe (zrzuty ekranu) i pliki CSV nie mogą być odtwarzane na oscyloskopie, a jedynie w odpowiednim oprogramowaniu na komputerze PC. Pliki CSV mogą być otwierane w programie Excel.

Zapis w pamięci ustawień przyrządu

Zachowywanie ustawień w pamięci oscyloskopu

Kompletne ustawienia przyrządu zachowywane są w pamięci nieulotnej. Gdy ustawienia zostaną przywołane z pamięci, to oscyloskop SHS800 wchodzi w tryb, w którym ustawienia zostały zapisane.

Туре	Save To	Setup		
Setups	Device	No.1	Save	Recall

Rysunek 2-49 Menu zapisu ustawień w pamięci wewnętrznej przyrządu

	Tabela 2-29	Menu zapisu	ustawień w	pamięci	oscyloskopu
--	-------------	-------------	------------	---------	-------------

Орсја	Ustawienia	Opis
Туре	Setups	Opcja zapisu i odczytu ustawień w pamięci oscyloskopu SHS800.
Save to	Device	Zachowanie ustawień w wewnętrznej pamięci oscyloskopu.
Setup	No.1 ÷ No.20	Opcja wyboru numeru pamięci, w której mają być zapisane dane ustawień lub z której ustawienia mają być przywołane.
Save		Potwierdzenie zapisu bieżących ustawień przyrządu do pamięci.
Recall		Przywołanie ustawień z pamięci.

Zapis ustawień w pamięci USB typu flash

Туре	SaveTo		
Setups	File	Save	Recall

Rysunek 2-50 Menu zapisu ustawień w zewnętrznej pamięci USB typu flash

Tabela 2-30 Menu zapisu ustawień w zewnętrznej pamięci USB

Орсја	Ustawienia	Opis
Туре	Setups	Opcja zapisu i odczytu ustawień oscyloskopu SHS800.
Save to	File	Zapis pliku ustawień przyrządu SHS800 w pamięci USB typu flash.
Save		Przejście do okna obsługi funkcji pamięci.

Zapis w pamięci przebiegów

Zachowywanie przebiegów w pamięci oscyloskopu

Type	SaveTo	Waveform		
Waveforms	Device	No.1	Save	Recall

Rysunek 2-51 Menu zapisu przebiegów w pamięci wewnętrznej przyrządu

Tabela 2-31 Menu zapisu przebiegów w pamięci oscyloskopu

Opcja	Ustawienia	Opis
Туре	Waveforms	Opcja zapisu i odczytu przebiegów.
Save to	Device	Zachowanie ustawień w wewnętrznej pamięci oscyloskopu SHS800.
Waveform	No.1 ÷ No.20	Opcja wyboru numeru pamięci, w której mają być zapisane dane przebiegu lub z której przebieg ma być przywołany.
Save		Potwierdzenie zapisu bieżącego przebiegu do pamięci.
Recall		Przywołanie przebiegu z pamięci.

Zapis przebiegów w pamięci USB typu flash

Туре	Save To		
Waveforms	File	Save	Recall

Rysunek 2-52 Menu zapisu przebiegów w zewnętrznej pamięci USB typu flash

		/		· · · · · · · · · · · · · · · · · · ·
Labela 2-32	Menu zapisu I	nrzebiedow w	zewnetrznei	namieci USB
	i iciia zapioa	pizebiegon n	2011.ider 211.cl	panniqui oob

Opcja	Ustawienia	Opis
Туре	Waveforms	Opcja zapisu i odczytu przebiegów.
Save to	File	Zapis przebiegu w pamięci USB typu flash.
Save		Zakończenie procedury zapisu przebiegu.

Zapis w pamięci zrzutów ekranu

Widoki ekranu mogą być zapisane jedynie w zewnętrznej pamięci USB, ale nie mogą być odtworzone na oscyloskopie. Wyświetlenie widoków ekranu jest możliwe jedynie na ekranie komputera za pośrednictwem dedykowanego oprogramowania.

Rysunek 2-53 Menu zapisu zrzutów ekranu

Tabela 2-33 Me	nu zapisu	widoku	ekranu
----------------	-----------	--------	--------

Opcja	Ustawienia	Opis
Туре	Picture	Opcja zapisu i odczytu widoków ekranu.
Drint Kov	Print Picture	Gdy do gniazda USB przyrządu SHS800 jest podłączona drukarka, to aby wydrukować zrzut ekranu oscyloskopu, należy wybrać opcję Print Picture i nacisnąć przycisk Save/Recall na mini- mum 4 sekundy.
Print Key	Save Picture	Gdy do gniazda USB przyrządu SHS800 jest wpięta pamięć flash USB, to aby zachować w pamięci zrzut ekranu, należy wybrać opcję Save Picture i nacisnąć przycisk Save/Recall na mini- mum 4 sekundy.
Save		Przejście do ekranu obsługi funkcji pamięci.

Zachowywanie w pamięci plików tekstowych CSV

Type	Data Depth	Para Save	
CSV	Displayed	Off	Save

Rysunek 2-54 Menu zapisu plików CSV

Tabela 2-34 Menu zapisu plików CSV

Opcja	Ustawienia	Opis
Туре	CSV	Opcja zapisu plików CSV w pamięci flash USB.
Data Depth	Displayed Maximum	Ustawienie zapisu danych wyświetlanego przebiegu w pliku CSV. Ustawienie zapisu wartości maksymalnych przebiegu w pliku CSV.
Para Save	On / Off	Ustawienie czy pliki CSV mają być zapisane w pamięci czy nie.
Save		Przejście do ekranu obsługi funkcji pamięci.

Przywracanie ustawień fabrycznych przyrządu

Naciskając przycisk Recall, można przywrócić ustawienia fabryczne (domyślne) przyrządu.

Tabela 2-35 Menu przywracania ustawień domyślnych przyrządu

Opcja	Ustawienia	Opis	
Туре	Factory	Wyświetlanie ustawień fabrycznych przyrządu.	
	Load	Załadowanie (przywrócenie) ustawień fabrycznych.	

Przykład zapisu przebiegu w pamięci flash USB

Procedura:

- 1. Nacisnąć przycisk "Save/Recall" i przyciskiem "F1" ustawić opcję Type na Waveforms.
- 2. Wpiąć do portu USB Host przyrządu pamięć typu flash (w przypadku prawidłowego rozpoznania pamięci wyświetlony zostanie komunikat: **USB flash driver connects successfully!**).
- 3. Nacisnąć przycisk "F2" (opcja Save to) i wybrać ustawienie File.
- 4. Nacisnąć przycisk "F4" (opcja Save), aby wejść w interfejs funkcji pamięci.
- 5. Nacisnąć przycisk "F1" (opcja Modify) i wybrać ustawienie File.
- Nacisnąć przycisk "F2" (opcja New File) i wprowadzić nazwę nowego pliku zgodnie z podpowiedziami systemu na temat tworzenia nowego pliku. Po zakończeniu wprowadzania nazwy nacisnąć przycisk opcji Confirm.

Name : A B C D N O P Q 0 1 2 3 BackSpa	SHS00001 EFGHI RSTUV 45678 ce Deletec	J K L M WX Y Z 9 L 1 Select charact	eanName ers	
InputChar	+	→	Confirm	Cancel

7. Zapisywanie pliku zakończone powodzeniem.

A/SHS100	00	Fre	e: 258 MB	
e SF	IS00001.DAV	41	2 KB	
Use the ac	ijust knob to s	select characti	ers	_
Modify				Next Page
Files	New File	Del File	Load	Page 1/2

Rysunek 2-56 Plik prawidłowo zapisany w pamięci

Odczyt pliku z pamięci:

Wybrać plik, który ma być przywołany z pamięci i nacisnąć **Recall** w oknie obsługi pamięci, co kończy procedurę odczytu pliku.

Note:

Obraz zapisany w pliku z rozszerzeniem BMP nie może być odtworzony na ekranie oscyloskopu SHS800, natomiast może być otwarty na ekranie komputera PC za pośrednictwem odpowiedniego oprogramowania.

Ustawienia systemowe

Aby wejść w menu ustawień systemowych, należy nacisnąć przycisk "User". Patrz rysunek 2-57.

Rysunek 2-57 Menu ustawień systemowych – cz.1

Tabela 2-36	Menu	ustawień	systemow	ych –	cz.1
-------------	------	----------	----------	-------	------

Opcja	Ustawienia	Opis
System Status		Wyświetlanie podstawowych informacji dotyczących przy- rządu SHS800.
Sound	₩ A A A A	Sygnalizacja akustyczna obsługi przycisków włączona. Sygnalizacja akustyczna obsługi przycisków wyłączona.
Counter	On / Off	Włączanie / wyłączanie częstościomierza.
Language	Chiński uproszczony, chiński tradycyjny, angielski, arabski, francuski, niemiecki, rosyjski, hiszpański, portugalski, japoński, koreański, włoski	Ustawienie języka interfejsu użytkownika.
Next Page	Page 1/4	Przejście do kolejnej strony menu.

Tabela 2-37	Menu ust	awień syste	mowych – cz.2
-------------	----------	-------------	---------------

Opcja	Ustawienia	Opis
Do self cal		Automatyczna korekta danych kalibracyjnych.
Do self test	Screen Test Keyboard Test	Uruchomienie programu testu ekranu. Uruchomienie programu testu przycisków.
Print Setup		Wejście w menu ustawień opcji wydruku.
USB Device	Printer	Przyrząd SHS800 łączony jest z drukarką kablem USB. Jeżeli ma być uruchomiona funkcja wydruku, należy wybrać opcję Printer . W tym momencie w górnej części ekranu wyświe- tlona zostanie ikona drukarki.
	Computer	Przyrząd SHS800 łączony jest z komputerem kablem USB. Jeżeli ma być uruchomione oprogramowanie EasyScope, należy wybrać opcję Computer . W tym momencie w górnej części ekranu wyświetlona zostanie ikona komputera.
Next Page	Page 2/4	Przejście do trzeciej strony menu.

Rysunek 2-58 Menu ustawień systemowych – cz.2

Do	Do	Print	USB Device	Next Page
Self Cal	Self Test	Setup	Printer	Page 2/4

Rysunek 2-59 Menu ustawień wydruku

Update Finnware	Record	Next Page Page 3/4
1 at mindle		

Rysunek 2-60 Menu ustawień systemowych – cz.3

Tabela 2-38 Menu ustawień systemowych – cz.3

Opcja	Ustawienia	Opis
Update firmware		Aktualizacja oprogramowania systemowego. Oprogramo- wanie oscyloskopu SHS800 można aktualizować, korzystając z pamięci flash USB (zajmuje to ok. 2 minut).
Record		Wejście w menu funkcji nagrywania przebiegów.
Next Page	Page 3/4	Przejście do czwartej strony menu.

Soreen sauer		Next Page
15min	Date/Time	Page 4/4

Rysunek 2-61 Menu ustawień systemowych – cz.4

Tabela 2-39 Menu ustawień systen	nowych – cz.4
----------------------------------	---------------

Opcja Ustawienia		Opis	
Screen-saver	1min, 2min, 5min, 10min, 15min, 30min, 1hour, 2hour, 5hour, Off	Ustawienie czasu bezczynności, po którym wygaszany jest ekran przyrządu.	
Date/time		Ustawianie daty i czasu zegara systemowego SHS800.	
Next Page	Page 4/4	Powrót do pierwszej strony menu.	

Autokalibracja

Funkcja autokalibracji pozwala zoptymalizować parametry toru sygnału przyrządu SHS800 i w efekcie zmniejszyć błędy pomiarowe. Autokalibracja powinna być wykonana, gdy oscyloskop pracuje dłużej niż 30 minut lub temperatura otoczenia na stanowisku pracy zmieni się o więcej niż 5°C. Przed uruchomieniem autokalibracji należy odłączyć od oscyloskopu wszystkie sondy i przewody pomiarowe. Następnie należy nacisnąć przycisk "**User**" i wybrać opcję "**Do self cal**", aby otworzyć okno autokalibracji i uruchomić kalibrację zgodnie z komunikatami pokazującymi się na ekranie.

Rysunek 2-62 Okno procedury autokalibracji

Ustawienia drukowania

Oscyloskop SHS800 obsługuje drukarki kompatybilne ze standardem PictBridge. Aby drukować widoki ekranu, należy kablem USB podłączyć drukarkę zgodną ze specyfikacją PictBridge do portu USB Device na bocznej ściance oscyloskopu. Po dokonaniu niezbędnych ustawień wydruku należy nacisnąć przycisk "**Save/Recall**" na minimum 4 sekundy, aby uruchomić proces drukowania.

InkSaver	Layout	PaperSize	Print Key	Next Page
On	Portrait	Default	Print Picture	Page 1/2

Rysunek 2-63 Menu ustawień wydruku – cz.1

Орсја	Ustawienia	Opis
Ink Saver	On Off	Opcja oszczędności tuszu. Po ustawieniu opcji na " On " obraz ekranu drukowany jest na białym tle.
Layout	Portrait Landscape	Pionowa orientacja wydruku. Pozioma orientacja wydruku.
Paper Size	Ustawienie rozmiaru papieru	W opcji wyświetlane są rozmiary papieru obsługiwane przez podłączoną drukarkę PictBrigde.
	Print Picture	Wybrać opcję Print Picture , gdy do oscyloskopu podłączona jest drukarka. Wydruk zawartości ekranu następuje po naciśnięciu przycisku Save/Recall na minimum 4 sekundy.
	Save Picture	Wybrać opcję Save Picture , gdy do oscyloskopu podłączona jest pamięć flash USB. Po naciśnięciu przy- cisku Save/Recall na minimum 4 sekundy obraz ekranu jest zapisywany w pamięci USB.
Next Page	Page 1/2	Przejście do drugiej strony menu.

Tabela 2-40 Menu ustawień wydruku – cz.1

Rysunek 2-64 Menu ustawień wydruku – cz.2

Tabela 2-41 Menu ustawień wydruku – cz.2

Opcja	Ustawienia	Opis	
Image Size	Ustawienie rozmiaru papieru	W opcji wyświetlane są rozmiary papieru obsługiwane przez podłączoną drukarkę PictBrigde.	
Paper type	Deafult, Plain, Photo, Fast Photo	Dobór rodzaju papieru.	
Print Quality	Default, Normal, Draft, Fine	Ustawienie jakości wydruku; odpowiednio: domyślna, normalna, robocza, wysoka.	
ID Print	Deafult, On, Off		
Next Page	Page 2/2	Powrót do pierwszej strony menu wydruku.	

Nagrywanie przebiegów

Funkcja **Waveform Record** pozwala na nagrywanie przebiegu wejściowego z określonym odstępem czasowym aż do osiągnięcia ramki końcowej.

W czasie nagrywania przebiegów kanału CH1 lub CH2 użytkownik może odstęp czasowy między ramkami nagrania. Rejestrator umożliwia nagranie do 2500 ramek przebiegu.

Rysunek 2-65 Menu nagrywania przebiegów

Opcja	Ustawienia	Opis	
Mode	Record Play Back OFF	Ustawienie trybu nagrywania. Ustawienie trybu odtwarzania. Wyłączenie menu rejestratora.	
Source	CH1, CH2	Wybór źródła sygnału do rejestracji.	
Interval	\$	Ustawienie interwału czasowego między ramkami nagrania.	
End Frame	\$	Ustawienie maksymalnej liczby ramek nagrania.	
	🔵 (Run)	Uruchomienie nagrywania przebiegu.	
Operate	(Stop)	Zatrzymanie nagrywania przebiegu.	

Tabela 2-42 Menu nagrywania przebiegów

Rysunek 2-66 Menu odtwarzania nagranego przebiegu – cz.1

Tabela 2-43	Menu odtwarzania	przebiegów -	cz.1
-------------	------------------	--------------	------

Opcja	Ustawienia	Opis	
Mode	Play back	Ustawienie trybu odtwarzania przebiegów.	
Operate	► (Run) ■ (Stop)	Nacisnąć w celu odtworzenia nagranego przebiegu. Nacisnąć w celu zatrzymania odtwarzania nagrania.	
Play mode (tryb odtwarzania)	↓ ↓ ↓	Odtwarzanie ciągłe (z powtarzaniem). Odtwarzanie jednorazowe.	
Interval	\$	Ustawienie interwału czasowego między ramkami.	
Next Page	Page 1/2	Przejście do drugiej strony menu odtwarzania.	

Rysunek 2-67 Menu odtwarzania nagranego przebiegu – cz.2

Орсја	Ustawienia	Opis	
Start Frame	\$	Wybór ramki startowej odtwarzania.	
Curr_Frame	\$	Wybór bieżącej ramki do odtworzenia.	
End Frame	\$	Wybór ramki końcowej odtwarzania.	
Return		Powrót do głównego menu rejestratora przebiegów.	
Next Page	Page 2/2	Powrót do pierwszej strony menu odtwarzania.	

Tabela 2-44 Menu odtwarzania przebiegów - cz.2

Przykład zastosowania funkcji nagrywania przebiegów

Procedura:

- 1. Podać na wejście oscyloskopu przebieg, który ma być zarejestrowany.
- 2. Nacisnąć przycisk "**User**", aby wejść menu ustawień systemowych.
- 3. Naciskając przycisk "**F5**", przejść do trzeciej strony menu i przyciskiem "**F3**" wejść w menu nagrywania przebiegów **Record**.
- 4. Przyciskiem "F1" ustawić tryb nagrywania Record.
- Nacisnąć przycisk "F3" (opcja Interval) i przyciskami nawigacyjnymi ustawić odstęp miedzy ramkami, a następnie nacisnąć przycisk "F4" (opcja End) i przyciskami nawigacyjnymi ustawić liczbę ramek nagrania.
- 6. Nacisnąć przycisk "**F5**", aby rozpocząć nagrywanie przebiegu.

Rysunek 2-68 Nagrywanie przebiegu

Przykład odtwarzania nagranego przebiegu

Procedura:

- 1. Nacisnąć przycisk "F1" i ustawić opcję Play Back.
- 2. Nacisnąć przycisk "F5", aby przejść do drugiej strony menu.
- Przyciskami nawigacyjnymi ustawić odpowiednio początkową ramkę odtwarzania w opcji Start Frame, bieżącą ramkę odtwarzania w opcji Curr_frame oraz końcową ramkę odtwarzania w opcji End Frame i wrócić do pierwszej strony menu, naciskając przycisk "F5".
- 4. Przyciskiem "**F1**" ustawić funkcję odtwarzania **Play Back**, następnie tryb odtwarzania (opcja **Play Mode**), odstęp ramek (opcja **Interval**) i uruchomić odtwarzanie przyciskiem "**F2**".

5. Aby wyjść z trybu rejestratora przebiegów, przyciskiem "**F1**" wybrać opcję **Off**.

Rysunek 2-69 Odtwarzanie przebiegu

Rozdział 3: Zasady obsługi multimetru

Zawartość rozdziału

Rozdział zawiera wprowadzenie krok po kroku do funkcji multimetru przyrządu serii SHS800. We wprowadzeniu przedstawiono przykłady korzystania z menu ekranowego i wykonywania podstawowych operacji bez wykorzystywania wszystkich możliwości dostępnych funkcji.

Cyfrowy multimetr oscyloskopu SHS800 posiada następujące funkcje: pomiar napięcia stałego (DCV), pomiar napięcia zmiennego (ACV), pomiar rezystancji (Res.), test diod półprzewodnikowych (Diode), test ciągłości (Continuity), pomiar pojemności (Cap.), pomiar prądu stałego (DCI) i pomiar prądu zmiennego (ACI).

Uwagi:

- 1. Podczas korzystania z multimetru należy dbać o zgodność z instrukcją połączeń obwodu pomiarowego dla danej funkcji.
- 2. Naciśnięcie przycisku "Run/Stop" zamraża bieżący odczyt na ekranie.

- 1. Zakres pomiarowy multimetru
- 2. Linijka analogowa
- 3. Wynik pomiaru
- 4. Ikony gniazd wejściowych
- 5. Wartość względna
- 6. Wskaźnik podłączenia przewodów pomiarowych
- 7. Wskaźnik funkcji pomiarowej
- 8. Tryb pracy

Pomiar napięcia stałego DC i zmiennego AC

Opcja	Ustawienia	Opis
Meter	DCV, ACV, Res., Diode, Continuity, Cap., DCI, ACI	Wybór funkcji pomiarowej.
Relative Value	On	Zapisanie bieżącego odczytu jako wartości odniesienia dla pomiarów względnych i powtórny pomiar wielkości wejściowej. W trybie pomiarów względnych rzeczywista wartość mierzonej wielkości jest równa sumie odczytu i wartości odniesienia.
	Off	Wyłączenie trybu pomiarów względnych. Odczyt pomiaru jest równy rzeczywistej wartości mierzonej wielkości.
Mode	Auto	Tryb automatycznego doboru zakresu pomiarowego.
Mode	Manual	Tryb ręcznego doboru zakresu pomiarowego.
Scala	Auto	Automatyczny dobór jednostek pomiaru odpowiednio do mie- rzonej wartości.
Scale	Manual	Ręczny wybór jednostek pomiaru. W trybie tym przekroczenie ustawionego zakresu jest sygnalizowane przez przyrząd.
Trend Plot	On	Włączenie wyświetlania wykresu trendu pomiarów.

Tabela 3-1 Menu funkcji pomiarowych

Rysunek 3-2 Pomiar napięcia stałego

Rysunek 3-3 Pomiar napięcia zmiennego

Procedura pomiaru:

- 1. Nacisnąć przycisk "**Meter**", aby wejść w tryb multimetru przyrządu, i przyciskiem "**F1**" wybrać odpowiednio pomiar napięcia stałego **DCV** lub zmiennego **ACV**.
- Czerwony przewód pomiarowy wpiąć do gniazda bananowego V.Ω.C, a czarny do gniazda COM przyrządu. Końcówki pomiarowe przewodów podłączyć do mierzonego obwodu lub źródła napięcia.
- 3. Zgodnie z potrzebami włączyć lub wyłączyć tryb pomiarów względnych **Relative**.
- 4. Odpowiednio do potrzeb ustawić ręczny (**Manual**) lub automatyczny (**Auto**) dobór zakresu pomiarowego.
- 5. Odczytać na ekranie zmierzoną wartość napięcia.

Pomiar rezystancji

Rysunek 3-4 Pomiar rezystancji

Procedura pomiaru:

- 1. Nacisnąć przycisk "**Meter**", aby wejść w tryb multimetru przyrządu, i przyciskiem "**F1**" wybrać funkcję pomiaru rezystancji **Res**.
- Czerwony przewód pomiarowy wpiąć do gniazda bananowego V.Ω.C, a czarny do gniazda COM przyrządu. Końcówki pomiarowe przewodów podłączyć do mierzonej rezystancji.
- 3. Zgodnie z potrzebami włączyć lub wyłączyć tryb pomiarów względnych **Relative**.
- 4. Odpowiednio do potrzeb ustawić ręczny (**Manual**) lub automatyczny (**Auto**) dobór zakresu pomiarowego.
- 5. Odczytać na ekranie zmierzoną wartość rezystancji.

Uwagi:

Aby uniknąć uszkodzenia oscyloskopu SHS800 podczas pomiaru rezystancji, upewnić się, że zasilanie mierzonego obwodu jest wyłączone, a kondensatory wchodzące w jego skład – rozładowane.

Test diod półprzewodnikowych

Rysunek 3-5 Test diod półprzewodnikowych

Procedura pomiaru:

- 1. Nacisnąć przycisk "**Meter**", aby wejść w tryb multimetru przyrządu, i przyciskiem "**F1**" wybrać funkcję testu diod półprzewodnikowych **Diode**.
- Czerwony przewód pomiarowy wpiąć do gniazda bananowego V.Ω.C, a czarny do gniazda COM przyrządu. Końcówki pomiarowe przewodów podłączyć do mierzonej diody.
- 3. Na ekranie odczytać wynik pomiaru.

Test ciągłości obwodu

Rysunek 3-6 Test ciągłości obwodu

Procedura pomiaru:

- 1. Nacisnąć przycisk "**Meter**", aby wejść w tryb multimetru przyrządu, i przyciskiem "**F1**" wybrać funkcję testu ciągłości **Continuity**.
- Czerwony przewód pomiarowy wpiąć do gniazda bananowego V.Ω.C, a czarny do gniazda COM przyrządu. Końcówki pomiarowe przewodów podłączyć do końców mierzonego obwodu.
- 3. Jeżeli rezystancja mierzonego obwodu jest mniejsza niż 50 Ω, przyrząd wyświetli zmierzoną wartość rezystancji i uruchomi alarm akustyczny.
- 4. Jeżeli rezystancja mierzonego obwodu jest większa niż 50 Ω, przyrząd wyświetli zmierzoną wartość i nie włączy alarmu akustycznego.

Pomiar pojemności

Rysunek 3-7 Pomiar pojemności

Procedura pomiaru:

- 1. Nacisnąć przycisk "**Meter**", aby wejść w tryb multimetru przyrządu, i przyciskiem "**F1**" wybrać funkcję pomiaru pojemności **Cap**.
- Czerwony przewód pomiarowy wpiąć do gniazda bananowego V.Ω.C, a czarny do gniazda COM przyrządu. Końcówki pomiarowe przewodów podłączyć do mierzonej pojemności.
- 3. Zgodnie z potrzebami włączyć lub wyłączyć tryb pomiarów względnych **Relative**.
- 4. Odczytać na ekranie wynik pomiaru.

Pomiar prądu stałego DC i zmiennego AC

Rysunek 3-8 Pomiar prądu stałego na zakresie "mA"

Rysunek 3-9 Pomiar prądu stałego na zakresie "A"

Rysunek 3-10 Pomiar prądu zmiennego na zakresie "mA"

Rysunek 3-11 Pomiar prądu zmiennego na zakresie "A"

Procedura pomiaru:

- 1. Nacisnąć przycisk "**Meter**", aby wejść w tryb multimetru przyrządu, i przyciskiem "**F1**" wybrać odpowiednio pomiar prądu stałego **DCI** lub zmiennego **ACI**.
- Czerwony przewód pomiarowy wpiąć do gniazda bananowego odpowiednio **10A** lub **mA** (w zależności od spodziewanej wartość prądu), a czarny – do gniazda **COM** przyrządu. Końcówki pomiarowe przewodów podłączyć szeregowo w badany obwód.
- 3. Zgodnie z potrzebami włączyć lub wyłączyć tryb pomiarów względnych **Relative**.
- 4. Odpowiednio do potrzeb ustawić ręczny (**Manual**) lub automatyczny (**Auto**) dobór zakresu pomiarowego.
- 5. Odczytać na ekranie zmierzoną wartość prądu.

Rozdział 4: Korzystanie z funkcji rejestratora

Zawartość rozdziału

Rozdział zawiera wprowadzenie krok po kroku do funkcji rejestratora danych przyrządu serii SHS800. We wprowadzeniu przedstawiono przykłady korzystania z menu ekranowego i wykonywania podstawowych operacji.

Rejestrator zasadniczo realizuje dwie funkcje:

Trend plot: Funkcja trendów zachowuje w pamięci wyniki pomiarów, aby później wykreślić wykres pomiarów oscyloskopu lub multimetru w funkcji czasu.

Waveform recorder: Funkcja umożliwia nagrywanie przebiegów sygnałów wejściowych w czasie rzeczywistym bez przerw i odstępów. Można powiedzieć, że oscyloskop SHS800 może zapamiętać wszystkie dane przebiegu a następnie odtworzyć je na ekranie. Oscyloskop pracuje tu podobnie do urządzenia rejestrującego przebiegi, a maksymalna pojemność jego pamięci wewnętrznej wykorzy-stywanej do takiej rejestracji wynosi 7 Mpunktów.

Wykres trendu pomiarów oscyloskopowych

Rysunek 4-1 Interfejs trendu pomiarów oscyloskopowych

- 1. Zarejestrowany bieżący czas
- 2. Procent zarejestrowanych danych w całej pojemności pamięci
- 3. Wartość najpóźniej zarejestrowanych danych punktu A
- 4. Wartość najpóźniej zarejestrowanych danych punktu B
- 5. Czas rzeczywisty
- 6. Czas próbki wskazywanej przez kursor
- 7. Wartość parametru przebiegu w punkcie wskazywanym przez kursor
- 8. Współczynnik odchylania pionowego (czułość)
- 9. Współczynnik odchylania pionowego (czułość)

Trend Plot	Param A	Param B		Next Page
Restart	CH1 Vpp	CH1 Vmax	Run	Page 1/2

Rysunek 4-2 Menu trendów pomiarów oscyloskopowych – cz.1

Tabela 4-1 Menu trendów pomiarów oscyloskopowych – cz.1

Opcja	Ustawienia	Opis
Trend Plot	Restart	Wybór funkcji pomiarowej.
Parameter A/B		Wybór mierzonego parametru sposród parametrów napięciowych, czasowych i opóźnieniewych.
Run/Stop		Zatrzymanie lub kontynuowanie rejestracji danych.
Next Page	Page 1/2	Przejście do drugiej strony menu.

	Manual			Next Page
Normal	Off	Waveforms	Return	Page 2/2

Rysunek 4-3	Menu trendów	pomiarów	oscyloskoj	powych – c	z.1
-------------	--------------	----------	------------	------------	-----

Opcja	Ustawienia	Opis	
Normal		Wyświetlanie do 1 minuty danych.	
Display Mode	View All	Wyświetlanie wszystkich danych w postaci skompresowanej.	
Off		Automatyczna rejestracja danych.	
Manual	On	Ręczna rejestracja danych. Kolejne rekordy danych następują po sobie.	
Waveforms		transfer danych do pamięci zewnętrznej.	
Return		Powrót do interfejsu oscyloskopu.	
Next Page	Page 2/2	Powrót do pierwszej strony menu.	

Tabela 4-2 Menu trendów pomiarów oscyloskopowych – cz.2

W pierwszej kolejności należy ustawić tryb oscyloskopu lub multimetru. Funkcje rejestratora można wybrać z głównego menu rejestratora przebiegów. Aby otworzyć główne menu rejestratora, należy nacisnąć przycisk "**Recorder**".

Scope	Scope	Meter
Trend Plot	Recorder	Trend Plot

Rysunek 4-4 Główne menu funkcji rejestratora

Przykład użycia funkcji trendu pomiarów oscyloskopowych

Procedura:

Uruchomienie funkcji wykresu trendu pomiarów oscyloskopowych

- 1. Na wejście kanału CH1 lub CH2 podać mierzony sygnał.
- 2. Nacisnąć przycisk "**Recorder**", aby wejść w główne menu rejestratora danych.
- 3. Nacisnąć przycisk "F1", aby wybrać wykres trendu pomiarów oscyloskopowych Scope Trend Plot.
- 4. Wybrać mierzone parametry **Parameter A/B** i uruchomić rejestrację danych do wykresu trendu.
- 5. Nacisnąć przycisk "**F5**", aby zatrzymać lub kontynuować rejestracje danych.

Rysunek 4-5 Zarejestrowana krzywa trendu

Wyświetlanie zarejestrowanych danych

- 6. Nacisnąć przycisk "F1", aby wejść do drugiej strony menu wykresu trendu.
- Nacisnąć przycisk "F1", aby wybrać tryb wyświetlania danych.
 Normal: wyświetlane do 1 minuty danych.
 View All: wyświetlanie wszystkich danych zarejestrowanych w pamięci.

- 8. Funkcja Zoom: przy pracy pełnoekranowej nacisnąć przycisk podstawy czasu, aby powiększyć lub zmniejszyć obraz.
- 9. Analiza danych: przesuwanie kursora umożliwia analizę danych przebiegu w czasie.

Rysunek 4-6 Analiza wykresu trendu

- 10. Zachowywanie przebiegu: w celu wykonania bardziej szczegółowej analizy można zachować zarejestrowane dane przebiegów w pamięci zewnętrznej.
- 11. Nacisnąć przycisk "**Return**", aby wyjść z trybu wykresu trendu.

Rejestrator przebiegów

Aby otworzyć główne menu rejestratora przebiegu w normalnym trybie oscyloskopowym, należy nacisnąć przycisk "**Recorder**", a następnie przycisk "**F2**".

Rysunek 4-8 Menu rejestratora przebiegów

Tabela 4-3 Menu trendów pomiarów oscyloskopowych – cz.1

Орсја	Opis		
Record	Bezprzerwowa rejestracja przebiegu.		
Replay	Odtwarzanie nagranego przebiegu.		
Option	Ustawienie parametrów rejestratora przebiegów.		
Return	Wyjście z funkcji rejestratora przebiegów.		

Rysunek 4-8 Menu trybu zapisu rejestratora przebiegów

Opcja	Opis
Start	Uruchomienie rejestracji przebiegu. (Rejestrowane są przebiegi o podstawie czasu 100 ms i wyższych)
Replay	Odtwarzanie nagranego przebiegu.
Сору	Kopiowanie przebiegu zarejestrowanego w pamięci wewnętrznej do pamięci zewnetrznej flash USB.
Save Mode	Wybór lokalizacji rekordu przebiegu łącznie z zewnętrzna pamięcią flash USB. W pamięci USB można zapisywać przebiegi przy podstawie czasu 2,5s/dz i wyższych.
Return	Wyjście z podmenu i powrót do głównego menu rejestratora przebiegów.

Tabela 4-4 Menu trybu zapisu rejestratora przebiegów

Rysunek 4-9 Menu trybu odtwarzania rejestratora przebiegów

Tabela 4-5 Menu trybu odtwarzania rejestratora przebiegów

Орсја	Opis
Stop/Continue	Zatrzymywanie lub automatyczne kontynuowanie odtwarzania przebiegu. Można zmieniać podstawę czasu do obserwacji przebiegu z pamięci.
Restart	Odtwarzanie nagranego przebiegu.
Previous	Przewijanie nagrania wstecz i ponowne odtwarzanie.
Next	Przyspieszanie odtwarzania przebiegu (przewijanie w przód).
Return	Wyjście z podmenu odtwarzania przebiegu.

Rysunek 4-10 Menu ustawień rejestratora przebiegów

Tabela 4-6 Menu ustawień rejestratora przebiegów

Opcja	Ustawienia	Opis
) (in	Full screen	Rejestracja i odtwarzanie przebiegu wejściowego wyświetlanego na pełnym ekranie.
(tryb podglądu)	Split	Rejestracja i odtwarzanie przebiegu wejściowego wyświetlanego na podzielonym ekranie. W górnej połowie ekranu wyświetlany jest przebieg kanału CH1, a w dolnej – CH2.
Record	Continous	Nagrywanie ciągłe. Gdy pamięć rejestracji jest pełna, nowe dane nadpisują dane najstarsze.
(tryb rejestracji)	Single	Rejestracja zostaje zatrzymana po zapełnieniu pamięci rejestra- tora.
Replay By point		Podczas odtwarzania przebieg na ekranie jest odświeżany punkt po punkcie od lewej do prawej strony ekranu.
odtwarzania)	By frame	Podczas odtwarzania przebieg jest odświeżany na całej szerokości ekranu zgodnie z czasem próbkowania każdej ramki danych.
Return		Wyjście z interfejsu ustawień rejestratora.

Przykład zastosowania rejestratora przebiegów

Uruchomienie funkcji rejestratora przebiegów:

- 1. Podstawa czasu 100 ms/dz lub wyższa.
- 2. Nacisnąć przycisk "Recorder", aby wejść w główne menu rejestratora.
- 3. Nacisnąć przycisk "F2", aby wybrać rejestrację danych oscyloskopowych Scope Recorder.
- 4. Nacisnąć przycisk "F3", aby ustawić rejestrator przebiegów Waveform Recorder.
- 5. Nacisnąć przycisk "F5", aby wrócić do głównego menu rejestratora przebiegów.
- 6. Nacisnąć przycisk "**F1**", aby wejść w interfejs nagrywania przebiegu.
- 7. Nacisnąć przycisk "**F4**" (opcja **Save Mode**), aby ustawić lokalizację rejestrowanego przebiegu w pamięci. Dostępna jest pamięć wewnętrzna (**Interior**) lub zewnętrzna **flash USB**.
- Nacisnąć przycisk "F1", aby rozpocząć rejestrację danych przebiegu. Przebieg nie przesuwa się w prawo, a dane przebiegu zapisywane są do pamięci. Czas rejestracji jest różny w zależności od ustawionej podstawy czasu. W dowolnym momencie rejestrację można przerwać na pewien czas (Pause) lub zatrzymać (Stop).

Rysunek 4-11 Interfejs rejestratora przebiegów

Odtwarzanie przebiegu:

- Nacisnąć przycisk "F2", aby odtworzyć zarejestrowany przebieg.
 Zarejestrowany przebieg można odtwarzać wiele razy. Dostępna jest także możliwość przewijania nagrania w przód lub w tył w dowolnym momencie.
- 10. Nacisnąć przycisk "**F5**", aby wyjść z funkcji rejestratora przebiegów.

Wykres trendu pomiarów multimetrycznych

Rysunek 4-12 Interfejs trendu pomiarów multimetrycznych

- 1. Zarejestrowany bieżący czas
- 2. Procent zarejestrowanych danych w całej pojemności pamięci
- 3. Wartość parametru zarejestrowanych w ciągu 1 minuty
- 4. Wskaźnik rodzaju sygnału wejściowego DC lub AC
- 5. Wskaźnik trybu ręcznego (Manual) lub automatycznego (Auto)
- 6. Czas rzeczywisty
- 7. Współrzędna czasowa próbki w miejscu kursora
- 8. Wartość parametru przebiegu w punkcie wskazywanym przez kursor
- 9. Zakres osi pionowej
- 10. Zakres osi pionowej

Trend Plot	SaRate			Next Page
Restart	10Sa/s	Normal	Run	Page 1/2

Rysunek 4-13 Menu trendów pomiarów multimetrycznych – cz.1

Tabela 4-7 Menu trendów pomiarów multimetrycznych – cz.1

Орсја	Ustawienia	Opis	
Restrat		Zakończenie bieżącej rejestracji i rozpoczęcie nowego cyklu.	
Sa Rate	10Sa/s 0.005Sa/s	Ustawianie czestości próbkowania wejścia.	
Display	Normal	Wyświetlanie 1 minuty zarejestrowanych danych.	
Mode	All View	Wyświetlanie wszystkich zarejestrowanych próbek.	
Record	Run	Automatyczna rejestracja danych pomiarowych.	
Mode	Stop	Zatrzymanie rejestracji danych pomiarowych.	
Next Page	Page 1/2	Przejście do drugiej strony menu.	

	Manual		Next Page
Waveforms	Off	Return	Page 2/2

Rysunek 4-14 Menu trendów pomiarów multimetrycznych – cz.2

Tabela 4-8Menu trendów pomiarów multimetrycznych – cz.2

Орсја	Ustawienia	Opis		
Waveform Storage		Transfer zarejestrowanych danych do pamięci zewnętrznej.		
Record Manually	Off	Automatyczna rejestracja danych pomiarowych.		
	On	Ręczna rejestracja danych. Kolejne rekordy danych następują po sobie.		
Return		Powrót do normalnej pracy multimetru.		
Next Page	Page 2/2	Powrót do pierwszej strony menu.		

Przykład użycia funkcji trendu pomiarów multimetrycznych

Uruchomienie funkcji wykresu trendu pomiarów multimetrycznych

Procedura:

- 1. Na wejścia multimetru podłączyć prawidłowo mierzony sygnał (patrz **Rozdział 3 Zasady obsługi multimetru**).
- Nacisnąć przycisk "F5", aby wejść w funkcję wykresu trendu w głównym menu multimetru. Przyrząd SHS800 rejestruje wielkości mierzone na wejściu multimetru w sposób ciągły, a następnie wyświetla ich wykres czasowy.

Rysunek 4-15 Zarejestrowana krzywa trendu pomiarów multimetrycznych

- 3. Nacisnąć przycisk "**F4**", aby zatrzymać lub uruchomić rejestrację danych.
- 4. Na drugiej stronie menu można ustawić ręczny lub automatyczny tryb rejestracji danych pomiarowych.

Wyświetlanie zarejestrowanych danych

Procedura:

- Nacisnąć przycisk "F3", aby wybrać tryb wyświetlania danych.
 Normal: wyświetlane do 1 minuty zarejestrowanych wcześniej danych.
 View All: wyświetlanie wszystkich danych zarejestrowanych w pamięci.
- 6. Funkcja Zoom: przy pracy pełnoekranowej nacisnąć przycisk podstawy czasu, aby powiększyć lub zmniejszyć obraz.
- 7. Analiza danych: przesuwanie kursora umożliwia analizę danych przebiegu w czasie.

Rysunek 4-16 Analiza wykresu trendu pomiarów multimetrycznych

- 8. Zachowywanie przebiegu: w celu wykonania bardziej szczegółowej analizy można zachować zarejestrowane dane w pamięci zewnętrznej.
- 9. Nacisnąć przycisk "**Return**", aby wyjść z trybu wykresu trendu.

Rozdział 5: Komunikaty ekranowe i usuwanie usterek

Zawartość rozdziału

Rozdział zawiera szczegółowe informacje na temat komunikatów wyświetlanych na ekranie i opisuje postępowanie w przypadku podstawowych niesprawności przyrządu.

Komunikaty ekranowe

- Trig level at limit! : Informuje, że poziom wyzwalania ustawiany przyciskami nawigacyjnymi osiągnął wartość graniczną.
- Horizontal position at limit! : Informuje, że podczas regulacji położenia przebiegu w poziomie punkt wyzwalania osiągnął pozycję krańcową w rekordzie przebiegu.
- Volts/Div at limit! : Informuje, że współczynnik osi pionowej (V/dz) osiągnął minimalną wartość graniczną 2mV/dz lub maksymalną wartość graniczną 100V/dz.
- Volts position at limit! : System wyświetla ten komunikat, gdy położenie w pionie przebiegu osiągnęło wartość graniczną.
- Sec/Div at limit! : Informuje, że podczas regulacji współczynnik podstawy czasu osiągnął wartość graniczną.
- Holdoff time at limit! : System wyświetla ten komunikat, gdy podczas regulacji czas podtrzymania osiągnął graniczną wartość minimalną lub maksymalną.
- **Functions isn't useable!** : Informuje, że przy bieżących ustawieniach funkcja nie jest dostępna.
- No signal! : System wyświetla ten komunikat, gdy sygnał wejściowy nie spełnia warunków funkcji samonastawności (komunikat wyświetlany po naciśnięciu przycisku "AUTO").
- ◆ Adjust at limit! : Informuje, że podczas ustawiania przyciskami nawigacyjnymi szerokości impulsu odniesienia została osiągnięta wartość graniczna minimalna 20,0 ns lub maksymalna 10,0 s.
- Location Empty! : Komunikat wyświetlany po naciśnięciu przycisku "Recall" informuje, że w wybranej lokalizacji pamięci nie są zapisane dane żadnego przebiegu lub ustawień.
- USB Flash Drive Plug In! : Komunikat wyświetlany, gdy do portu USB Host została wpięta pamięć flash USB.
- USB Flash Drive Pull Out! : Komunikat wyświetlany, gdy pamięć USB została wyjęta z portu USB.
- Store Data Success! : Informuje, że procedura zapisu danych przebiegu, ustawień lub widoku ekranu do pamięci wewnętrznej lub pamięci USB zakończyła się powodzeniem.
- Read Data Success! : Informuje, że procedura odczytu danych przebiegu lub ustawień z pamięci wewnętrznej lub z pamięci USB zakończyła się powodzeniem.
- Please set USB Device to printer! : Komunikat ukazujący się po naciśnięciu pokrętła współczynnika podstawy czasu, gdy opcja "Print Key" jest ustawiona na "Print Picture", a opcja "USB Device" jest ustawiona na "Computer".
- USB Flash Drive isn't connected! : Komunikat wyświetlany, gdy w menu "Save/Recall" opcja "Save To" jest ustawiona na "File" lub opcja "Print Key" jest ustawiona na "Save Picture" i naciśnięty zostanie przycisk "Save" lub pokrętło podstawy czasu "S/div" przed podłączeniem pamięci USB flash do portu USB Host.
- **Record Wave Success!** : Komunikat wyświetlany, gdy zakończone zostało nagrywanie przebiegu.

Lokalizacja i usuwanie usterek

- 1. Gdy po włączeniu zasilania oscyloskopu SHS800 ekran pozostaje ciemny, sprawdzić przyrząd według poniższych punktów:
 - (1) Sprawdzić prawidłowość podłączenia kabla sieciowego.
 - (2) Upewnić się, że przycisk zasilania jest włączony.
 - (3) Po wykonaniu kroków (1) i (2) zrestartować oscyloskop.
 - (4) Gdy problem pozostał, skontaktować się z autoryzowanym serwisem firmy SIGLENT.

2. Gdy po cyklu akwizycji na ekranie nie ukazuje się żaden przebieg, wykonać poniższe sprawdzenie:

- (1) Sprawdzić, czy sonda jest połączona z kablem sygnałowym.
- (2) Sprawdzić, czy kable pomiarowe są pewnie podłączone do gniazd wejściowych.
- (3) Sprawdzić prawidłowość podłączenia sond pomiarowych do badanego obwodu.
- (4) Sprawdzić, czy testowane urządzenie generuje sygnał w punkcie pomiarowym.
- (5) Powtórzyć cykl akwizycji danych przebiegu.

3. Wynik pomiaru jest 10-krotnie większy lub mniejszy od spodziewanego.

Sprawdzić prawidłowość ustawienia współczynnika tłumienia sondy w menu kanału.

- 4. Gdy przebieg na ekranie nie jest stabilny, wykonać sprawdzenie według poniższej procedury:
 - (1) Sprawdzić, czy źródło wyzwalania (*Trigger Source*) jest ustawione na kanał obserwowanego sygnału.
 - (2) Sprawdzić rodzaj wyzwalania (*Trigger Type*). Przy standardowych sygnałach powinno być ustawione wyzwalanie zboczem (*Edge*), natomiast przy sygnałach wizyjnych – wyzwalanie *Video*. Sygnał będzie stabilnie wyświetlany tylko po dobraniu właściwego rodzaju wyzwalania.
 - (3) Włączyć sprzężenie wyzwalania przez filtr dolno- lub górnoprzepustowy ("HF Reject" lub "LF Reject"), aby usunąć z sygnału szumy, które mogą zakłócać pracę układu wyzwalania.

5. Po naciśnięciu przycisku "RUN/STOP" oscyloskop nie wyświetla żadnego sygnału na ekranie.

Sprawdzić, czy ustawiony jest tryb "Normal" lub "Single" wyzwalania i czy jednocześnie poziom wyzwalania nie jest ustawiony poza zakresem zmian napięcia sygnału. Jeżeli tak jest, to ustawić poziom wyzwalania na 50% lub włączyć tryb "Auto" wyzwalania. Rozwiązaniem problemu może być także skorzystanie z funkcji samonastawności przez naciśnięcie przycisku "AUTO", co spowoduje automatyczny dobór parametrów wyzwalania oraz skal osi pionowej i poziomej.

6. Wyświetlany przebieg jest podobny do drabiny.

- (1) Jest to zjawisko normalne. Podstawa czasu może być zbyt wolna. W celu poprawy obrazu można zwiększyć szybkość podstawy czasu (rozdzielczość osi poziomej).
- (2) Może tryb pracy ekranu ustawiony jest na wyświetlanie wektorowe (*Vectors*), wtedy poprawę kształtu przebiegu można uzyskać, ustawiając tryb punktowy (*Dots*) wyświetlania przebiegu.

7. Wyniki pomiarów multimetrem nie są prawidłowe.

- (1) Sprawdzić, czy zakres pomiarowy multimetru jest odpowiedni do mierzonej wielkości.
- (2) Sprawdzić, czy multimetr nie znajduje się poza okresem wymaganej kalibracji. Jeżeli wyniki pomiarów nie mieszczą się w gwarantowanym zakresie dokładności, należy skontaktować się z działem serwisowym firmy **SIGLENT** w celu zlecenia wykonania kalibracji przyrządu SHS800.
- (3) Gdy przyrząd SHS800 nie pracuje normalnie lub został ewidentnie uszkodzony, prosimy o skontaktowanie się z autoryzowanym serwisem firmy SIGLENT, aby uzyskać profesjonalną pomoc.
- 8. W przypadku jakichkolwiek innych problemów z naszym przyrządem prosimy o skontaktowanie się z centrum serwisowym SIGLENT. (Patrz Rozdział 6)

OSTRZEŻENIE:

Napraw naszych urządzeń mogą dokonywać jedynie osoby posiadające odpowiedni certyfikat firmy SIGLENT. W przeciwnym wypadku użytkownik traci uprawnienia gwarancyjne na przyrząd.

Rozdział 6: Serwis i wsparcie techniczne

Zawartość rozdziału

Rozdział zawiera podstawowe informacje na temat warunków gwarancji producenta i praw użytkownika.

Warunki gwarancji

Każdy produkt firmy **SIGLENT** posiada 3-letnią (od daty dostawy) gwarancję, że jest wolny od wad materiałowych i produkcyjnych przy normalnych warunkach użytkowania i utrzymania. Gwarancja obejmuje jedynie pierwszego nabywcę lub klienta końcowego autoryzowanego dystrybutora firmy SIGLENT. Jeżeli we wskazanym okresie stwierdzona zostanie usterka przyrządu, SIGLENT zapewni naprawę lub wymianę urządzenia zgodnie ze szczegółowymi warunkami gwarancji.

W celu organizacji wysyłki sprzętu do naprawy lub otrzymania kompletnych warunków gwarancji należy skontaktować się z najbliższym biurem regionalnym lub serwisem firmy SIGLENT.

SIGLENT ponosi odpowiedzialność tylko w zakresie wskazanym w niniejszym rozdziale i szczegółowych warunkach gwarancji. Gwarancja nie obejmuje w żadnym zakresie przydatności przyrządu do szczególnych zastosowań. SIGLENT nie ponosi żadnej odpowiedzialności za inne szkody pośrednio wynikające z uszkodzenia przyrządu.

Dane kontaktowe firmy SIGLENT

SHENZHEN SIGLENT TECHNOLOGIES CO., LTD Address: 3//F, No.4 BUILDING, 3rd LIUXIAN Rd, ANTONGDA INDUSTRY GARDEN, BAO'AN DISTRICT, SHENZEN, 518101 CHINA

Tel: 0086 755 3661 5186 e-mail: suport@siglent.com http://www.siglent.com

Dodatek A: Specyfikacja techniczna

Wszystkie wyspecyfikowane niżej parametry dotyczą ręcznych oscyloskopów cyfrowych serii SHS800 z sondą pomiarową o tłumieniu 10X. Przed sprawdzeniem zgodności parametrów przyrządu SHS800 ze specyfikacją techniczną należy spełnić poniższe warunki:

- Przyrząd musi pozostawać włączony przez minimum 30 minut w temperaturze otoczenia zgodnej ze specyfikacją.
- Należy wykonać procedurę autokalibracji (opcja Do Self Cal w menu User) w każdym przypadku, gdy temperatura otoczenia zmieni się o więcej niż 5°C.
- Oscyloskop musi posiadać ważną kalibrację fabryczną.
- Przyrząd SHS800 musi być kalibrowany raz w roku.

Wszystkie parametry są gwarantowane, o ile nie są oznaczone jako "typowe".

Parametry oscyloskopu

Wejścia					
Sprzężenie wejścia	AC, DC, GND				
Impedancja wejściowa	1MΩ ±2% równolegle z pojemnością 18pF ±3pF				
Tłumienie sondy	1X, 10X				
Współczynniki tłumienia sondy napięciowej	1X, 5X, 10X, 50X, 100X, 200X, 500X, 1000X				
Maksymalne napięcie wejściowe	CAT II	300 Vrms			
(względem ekranu gniazda BNC)	CAT III	150 Vrms			
Maksymalne napięcie na wejściu standardowej sondy 10X	CAT II	400 Vrms			
Maksymalne napięcie na wejściu sondy opcjonalnej 10X	CAT III	600 Vrms			
Maksymalne napięcia pływające	CAT II	600 Vrms			
na wejściu multimetru	CAT III	300 Vrms			
Współczynnik tłumienia sygnału wspólnego CMRR	>100:1 50 MHz				
Izolacja między kanałami	>35 dB				

Układ akw	izycji					
Tryb próbkowania		Czas rzeczywisty, czas ekwiwalentny				
	SHS820	Jeden kanał 32K, dwa kanały 16K				
Pojemność pamięci	SHSA815 SHS810 SHS806	Tryb pracy kanałów	Częstość próbkowania	Pamięć standardowa	Pamięć rozszerzona	
		Jeden kanał	1 GSa/s	40 kpkt	nieobsługiwana	
		Jeden kanał	500 MSa/s lub mniej	20 kpkt	2 Mpkt	
		Dwa kanały	500 MSa/s lub mniej	20 kpkt	1 Mpkt	
Tryb akwizycji		Sample (próbkowanie), Peak Measure (detekcja szczytowa), Average (uśrednianie)				
Uśredniane przebiegi		4, 16, 32, 64, 128, 256				

Odchylanie pionowe				
Czułość	2mV/dz ÷ 100V/dz (sekwencja 1-2-5 wartości)			
Zakres składowej stałej	2mV/dz ÷ 200mV/dz: ±1,6V 206mV/dz ÷ 10V/dz: ±40V 10.2V/dz ÷ 100V/dz: ±400V			
Rozdzielczość pionowa	8 bitów			
Liczba kanałów	2			
Pasmo przenoszenia	60MHz (SHS806), 100MHz (SHS810), 150MHz (SHS815), 200MHz (SHS820)			
Częstotliwość minimalna (AC, -3dB)	≤ 10Hz (na wejściu BNC)			
Dokładność wzmocnienia stałoprądowego	5mV/dz do 100V/dz: <±3,0% 2mV/dz: <±4,0%			
Dokładność pomiarów stałoprądo- wych (czułość ≤200mV/dz)	\pm [3%× (odczyt + składowa stała) + 1% składowej stałej + 0,2dz + 2mV]			
Dokładność pomiarów stałoprądo- wych (czułość >200mV/dz)	±[3%× (odczyt + składowa stała) + 1% przesunięcia w pionie + 0,2dz + 100mV]			
Czas narastania	<1,7ns (SHS820) <2,3ns (SHS815) <3,5ns (SHS810) <5,8ns (SHS806)			
Operacje matematyczne	+, -, *, /, FFT			
Funkcja FFT	Okna czasowe: Hanninga, Hamminga, Blackmana, prosto- kątne			
	Liczba próbek: 1024			
Ogranicznik pasma	20MHz (-3dB)			

Odchylanie poziome				
Próbkowanie w czasie rzeczywistym	Jeden kanał (przy podstawie czasu poniżej 50ns/dz): 1GSa/s; Dwa kanały: 500MSa/s			
Próbkowanie w czasie ekwiwalentnym	< 50GSa/s			
Tryby wyświetlania	MAIN, WINDOW, WINDOW ZOOM, SCAN, X-Y			
Dokładność podstawy czasu	±50ppm mierzona w czasie 1ms			
Zakres podstawy czasu	2,5ns/dz ÷ 50s/dz (SHS810, SHS815, SHS820) 5ns/dz ÷ 50s/dz (SHS806) Scan (płynąca podstawa czasu): 100ms/dz ÷ 50s/dz (sekwencja 1-2,5-5 wartości)			
Wyzwalanie				
--	---	--	--	
Rodzaj wyzwalania	Zbocze (Edge), szerokość impulsu (Pulse Width), Video, nachylenie zbocza (Slope), wyzwalanie przemienne (Alternative)			
Źródło wyzwalania	CH1, CH2			
Tryb wyzwalania	Auto, Normal, Single			
Sprzężenie wyzwalania	AC, DC, Lf Rej., HF Rej.			
Zakres poziomu wyzwalania	CH1, CH2: ±6 działek od środka ekranu			
Przesunięcie punktu wyzwalania	Przedwyzwalanie: (długość rekordu pamięci / (2 x próbkowanie)) Powyzwalanie: 260 działek			
Zakres czasu podtrzymania	100ns ÷ 1,5s			
Wyzwalanie zboczem (Edge)	Zbocze wyzwalające: narastające, opadające, oba			
Wyzwalanie szerokością	Tryb wyzwalania: (>, <, =) szerokość impulsu dodatniego (>, <, =) szerokość impulsu ujemnego			
	Zakres szerokości impulsów: 20ns ÷ 10s			
	Standard sygnału TV: PAL/SECAM, NTSC			
wizyjnej (Video)	Warunki wyzwalania: półobrazy nieparzyste, półobrazy parzyste, wszystkie linie, wskazana linia			
Wyzwalanie nachyleniem zbocza (Slope)	(>, <, =) szerokość zbocza dodatniego, (>, <, =) szerokość zbocza ujemnego			
	Czas odniesienia: 20ns ÷ 10s			
Wyzwalanie przemienne	Rodzaj wyzwalania kanału CH1: Edge, Pulse, Video, Slope			
(Alternative)	Rodzaj wyzwalania kanału CH2: Edge, Pulse, Video, Slope			

Tryb X-Y	
Sygnał osi X / sygnał osi Y	Kanał 1. (CH1) / kanał 2. (CH2)
Częstość próbkowania	25kSa/s ÷ 250MSa/s (regulacja ze skokiem 1-2,5-5 wartości)

Pomiary			
Automatyczne (32 parametry)	Vpp, Vamp, Vmax, Vmin, Vtop, Vbase, Vavg, Mean, Crms, Vrms, ROVShoot, FOVShoot, RPREShoot, FPREShoot, Rise Time, Fall Time, Freq, Period, +Wid, -Wid, +Duty, -Duty, BWid, Phase, FRR, FRF, FFR, FFF, LRR, LRF, LFR, LFF		
Kursorowe	Tryb ręczny (Manual), tryb śledzenia (Track) i tryb automatyczny (Auto)		

Przyciski funkcyjne		
AUTO	Przycisk funkcji samonastawności – automatycznie ustawiania jest czu- łość odchylania, podstawa czasu i poziom wyzwalania.	
Save/Recall	Przycisk funkcji pamięci. Możliwość zapisu w pamięci wewnętrznej 2 przebiegów odniesienia, 20 kompletów ustawień przyrządu i 10 obserwowanych przebiegów. Obsługa zewnętrznej pamięci flash USB.	

Sprzętowy licznik częstotliwości		
Rozdzielczość odczytu	1 Hz	
Zakres	10Hz do częstotliwości maksymalnej pasma, sprzężenie DC	
Rodzaje sygnału	Akceptowane są wszystkie sygnały wyzwalające (z wyjątkiem wyzwala- nia szerokością impulsów i sygnałem video)	

Parametry multimetru

Temperatura otoczenia: 23°C ±5°C Wilgotność względna: < 75%

Forma zapisu dokładności: ±(% odczytu + wartość najmniej znaczącej cyfry)

Maksymalne wskazanie	6000
Funkcje pomiarowe	napięcie stałe DC, napięcie zmienne AC, rezystancja, test diod, test ciągłości, pojemność, prąd stały DC, prąd zmienny AC
Maks. napięcie wejściowe	AC (wart. rzeczywista): 750V (częstotliwość: 20Hz ÷ 1kHz); DC: 1000V
Maks. prąd wejściowy	AC (wart. rzeczywista): 10A (częstotliwość: 20Hz ÷ 1kHz); DC: 10A
Impedancja wejściowa	10ΜΩ

Napięcie stałe (DCV)		
Zakres	Rozdzielczość	Dokładność
60mV	10µV	±(1% + 15)
600mV	100µV	
6V	1mV	
60V	10mV	±(1% + 5)
600V	100mV	
1000V	1V	

Napięcie zmienne (ACV)		
Zakres	Rozdzielczość	Dokładność
60mV	10µV	±(1% + 15)
600mV	100µV	
6V	1mV	
60V	10mV	$\pm(1\% + 5)$
600V	100mV	
750V	1V	

Rezystancja (Res.)		
Zakres	Rozdzielczość	Dokładność
600Ω	0,1Ω	
6kΩ	1Ω	
60kΩ	10Ω	+(104 + 5)
600kΩ	100Ω	$\pm(1\% + 5)$
6MΩ	1kΩ	
60MΩ	10kΩ	

Test diod (Diode) i test ciągłości (Continuity)		
Funkcja	Zakres	
Test diod	0 ÷ 2V	
Test ciągłości	przy rezystancji <50Ω alarm dźwiękowy	

Pojemność (Cap.)		
Zakres	Rozdzielczość	Dokładność
40nF	10pF	±(3% + 10) dla odczytu >5nF
400nF	100pF	
4µF	1nF	+(40/ + E)
40µF	10nF	$\pm(4\% + 3)$
400µF	100nF	

Prąd stały (DCI)		
Zakres	Rozdzielczość	Dokładność
60mA	10µA	+(10/ + E)
600mA	100µA	$\pm(1\% + 3)$
6A	1mA	+(1 E04 + E)
10A	10mA	$- \pm (1,5\% + 5)$

Na zakresach "A": czas pomiaru ≤10 sekund, czas przerwy ≥15 minut

Prąd zmienny (ACI)			
Zakres	Rozdzielczość	Dokładność	
60mA	10µA	±(104 ± E)	
600mA	100µA	$\pm(170 \pm 5)$	
6A	1mA	±(1 E04 + E)	
10A	10mA	$\pm (1,5\% + 5)$	

Na zakresach "A": czas pomiaru ≤10 sekund, czas przerwy ≥15 minut

Parametry rejestratora danych

Pamięć całkowita: 7 Mpunktów Jeden kanał: 7 Mpkt Dwa kanały: po 3,5 Mpkt każdy

Trend pomiarów oscyloskopowych		
Tryb wyświetlania	Widok pełny (View All) i normalny (1 minuta)	
Rekord rejestracji	800 Kpkt, czas rejestracji >18 godzin	
Liczba kanałów rejestracji	2	
Kursor i Zoom	obsługiwane	
Rejestracja ręczna	obsługiwana	

Trend pomiarów multimetrycznych		
Tryb wyświetlania	Widok pełny (View All) i normalny (1 minuta)	
Rekord rejestracji	1,2 Mpkt	
Liczba kanałów rejestracji	12	
Kursor i Zoom	obsługiwane	
Rejestracja ręczna	obsługiwana	

Dane ogólne

Ekran		
Тур	TFT LCD, przekątna 145mm (5,7"), matryca diagonalna, kolor	
Rozdzielczość	320 (poziomo) × 234 (pionowo) pikseli	
Paleta kolorów	24 bity	
Kontrast (typowo)	150:1	
Podświetlenie (typowo)	300 nitów	
Zakres wyświetlania przebiegu	8 x 12 działek	
Tryb wyświetlania przebiegów	punktowy (Dot), wektorowy (Vector)	
Poświata	wył., 1s, 2s, 5s, nieskończona	
Czas wyświetlania menu	2s, 5s, 10s, 20s, nieograniczony	
Automatyczne wyłączanie ekranu	wył., 1 min, 2 min, 5 min, 10 min, 15 min, 30 min, 1 godz., 2 godz., 5 godz.	
Styl interfejsu	Classical, Modern, Tradition, Succinct	
Interpolacja	Sin(x)/x, liniowa	
Tryb koloru	normalny, odwrócony	
Język interfejsu użytkownika	Chiński tradycyjny, chiński uproszczony, angielski, arabski, francuski, niemiecki, rosyjski, portugalski, hiszpański, japoński, koreański, włoski	

Zasilanie		
Zasilacz sieciowy	Napięcie zasilania	100~240VAC, 50/60Hz
	Napięcie wyjściowe	9V, 4A
Bateria zasilająca	5000mAh, 7,4VDC, 5 godzin pracy	
Czas ładowania	Około 4 godzin	

Środowisko pracy		
Temperatura	praca: 0°C ÷ +40°C	
otoczenia	przechowywanie: -20°C ÷ +70°C	
Chłodzenie	naturalne	
Wilgotność względna	85% RH, 40°C	
Wysokość n.p.m.	3000 m	

Parametry mechaniczne		
Wymiary	Szerokość:	163,2 mm
	Długość:	259,5 mm
	Grubość:	53,3 mm
Waga	1,5 kg	

Dodatek B: Ustawienia domyślne

Menu lub układ	Opcje, pokrętła lub przyciski	Ustawienie domyślne
	Sprzężenie	DC
	Ogranicznik pasma	Wył. (off)
	Regulacja czułości	Regulacja zgrubna
CH1, CH2 (odchylanie nionowe)	Tłumienie sondy	1X
(odchylanie plonowe)	Odwracanie przebiegu	Wył. (off)
	Filtr	Wył. (off)
	Czułość	1.00 V/dz
	Działanie	CH1+CH2
	Odwracanie przebiegu CH1	Wył. (off)
	Odwracanie przebiegu CH2	Wył. (off)
	Przekształcenie FFT	
MATH (operacio matematyczno)	Źródło	CH1
	Okno czasowe	Hanninga
	FFT Zoom	1X
	Skala	dBVrms
	Format ekranu	podzielony
	Okno	
	Położenie punktu wyzwalania	
HORIZON IAL	Podstawa czasu	500µs
	Okno rozciągu	50,0µs
	Pokrętło wyzwalania	Poziom
	Rodzaj	Wył. (off)
CURSOR	Źródło	CH1
(kursory ekranowe)	Kursory poziome (napięciowe)	+/- 3,2 działki
	Kursory pionowe (czasowe)	+/- 5 działek
MEACUDE (nomion()	Źródło	CH1
MEASURE (pointary)	Parametr	średnia
	Tryb pracy	próbkowanie (Sampling)
ACQUIRE	Liczba uśrednianych przebiegów	16
(układ akwizycji)	Tryb próbkowania	próbkowanie w czasie rzeczywistym
	Tryb wyświetlania	wektorowy (Vectors)
	Poświata	Wył. (off)
	Siatka	
DISPLAY	Jaskrawość przebiegu	60%
(ekran)	Jaskrawość siatki ekranu	40%
	Format przebiegu	ΥΤ
	Czas wyświetlania menu	nieograniczony (infinite)

	True	Listeria (Ceture)
SAVE/RECALL		
(obsługa pamięci)	Pamięc zapisu (Save to)	Pamięc wewnętrzna (Device)
	Numer komorki pamięci	1 (no.1)
	REFA/REFB	REFA
REF	Zródło	CH1
(przebiegi odniesienia)	REFA	Wył. (off)
	REFB	Wył. (off)
	Sygnalizacja akustyczna	Wł. (on)
USER	Licznik częstotliwości	Wł. (on)
(funkcje systemowe)	Gniazdo USB na bocznej ściance	Computer
	Rejestrator	Wył. (off)
	Rodzaj wyzwalania	Edge
	Źródło	CH1
TRIGGER (edge)	Zbocze	narastające (Rising)
(wyzwalanie zboczem)	Tryb	Auto
	Sprzężenie	DC
	Poziom	0,00V
	Rodzaj wyzwalania	Pulse
	Źródło	CH1
TRIGGER (pulse)	Warunek wyzwalania	=
(wyzwalanie szerokością	Szerokość impulsu odniesienia	1,00ms
impulsu)	Tryb	Auto
	Sprzężenie	DC
	Rodzaj wyzwalania	Video
	Źródło	CH1
TRIGGER (Video)	Polaryzacja	Normalna
(wyzwalanie video)	Synchronizacja	wszystkie linie (All Lines)
	Standard TV	NTSC
	Trvb	Auto
	Rodzaj wyzwalania	Slope
TRICCER (slope)	Źródło	CH1
(wyzwalanie nachyleniem	Warunek wyzwalania	
zbocza)	Czas odniesienia	1.00ms
· · · · · · · · · · · · · · · · · · ·	Tryb	Auto
	Rodzaj wyzwalania	Alternative
	Źródło	CH1
TRIGGER (Alternative)	Tryb	Edge
(wyzwalanie przemienne)	Sprzeżenie	
	7hocze	Narastajace
		ivarastające

Dodatek C: Instalacja baterii

Bateria oscyloskopu SHS800 jest dostarczana oddzielnie, zatem przez przystąpieniem do pracy z przyrządem należy ją zainstalować zgodnie z poniższą procedurą:

- 1. Odkręcić dwie śruby mocujące pokrywkę baterii (rysunek 1).
- 2. Odciągnąć blokadę baterii i zdjąć pokrywkę, jak pokazano na rysunku 2.
- 3. Dokładnie i ostrożnie włożyć baterię do pojemnika, jak pokazano rysunku 3.
- 4. Zamknąć pokrywkę baterii i dokręcić ją z wyczuciem odkręconymi wcześniej śrubami.
- 5. Prawidłowa instalacja baterii zostanie potwierdzona, gdy przyrząd będzie można włączyć.

Uwagi:

Styki baterii są tak zaprojektowane, aby zabezpieczyć ją przez odwrotnym podłączeniem, dlatego nie należy używać dużej siły przy instalacji.

Podczas instalacji zwracać uwagę na orientację baterii. Logo baterii jest umieszczone na górnej części jej obudowy.

Jeżeli oscyloskopu nie będzie można normalnie włączyć mimo prawidłowej instalacji baterii, jest możliwe, że bateria jest rozładowana. W takim przypadku należy ją prawidłowo naładować przed przystąpieniem do pracy.

Rysunek 3

Dodatek D: Utrzymanie i konserwacja

Zasady podstawowe

Nie przechowywać lub pozostawiać oscyloskopu na dłuższy czas w miejscach, gdzie ekran LCD jest narażony na bezpośrednią ekspozycję promieni słonecznych.

UWAGA! Aby uniknąć uszkodzenia przyrządu lub sond pomiarowych, nie wystawiać ich na działanie sprayów, płynów lub rozpuszczalników.

Czyszczenie

Gdy oscyloskop wymaga oczyszczenia, należy odłączyć go od wszelkich źródeł napięcia i czyścić zabrudzenia miękką, wilgotną szmatką. Przed powtórnym podłączeniem napięcia upewnić się, że przyrząd jest całkowicie suchy.

Czyszczenie zewnętrznych powierzchni oscyloskopu należy wykonać zgodnie z poniższymi uwagami:

- Oczyścić powierzchnię przyrządu i sond pomiarowych z kurzu za pomocą szmatki niepozostawiającej włókien. Podczas czyszczenia ekranu zachować szczególną ostrożność, aby nie porysować plastikowego filtru panelu LCD.
- 2. Silniejsze zabrudzenia czyścić miękką szmatką zwilżoną wodą.

Uwagi:

- 1. Aby uniknąć zniszczenia powierzchni przyrządu lub sond pomiarowych, nie używać do czyszczenia żadnych środków chemicznych lub środków zawierających materiały ścierne.
- 2. Unikać zalania przyrządu wodą lub innymi płynami, które mogą spowodować zwarcia jego obwodów zewnętrznych i porażenie prądem obsługi. Przed podłączeniem oscyloskopu do zasilania upewnić się, że jest on całkowicie suchy.