Gyroscope - Helpful navigation devices
Gyroscopes are devices whose task is to measure and maintain the angular position of an object. Gyroscopes are most often used in objects that do not usually rotate very quickly around their axis. Aircraft such as planes and helicopters typically rotate several degrees around their axis, such as during a turning maneuver or altitude change (excluding aerobatic flights). By detecting these small deviations, gyroscopes help stabilize the aircraft's flight, but changes in the aircraft's acceleration or linear speed do not affect the measurement of the aircraft's angular deviation. Gyroscopes built in MEMS technology enable measurement of angular velocity and take up little space. Such gyroscopes can be used to determine the orientation of an object and are successfully used in autonomous navigation systems in land and air traffic, including in extraterrestrial space. What's the easiest way to use a gyroscope? Imagine a bicycle wheel rotating at one revolution per second. This is equivalent to saying that it rotates at an angular speed of 360 degrees per second. How to check the direction of wheel rotation by measurement? Using a MEMS gyroscope enabling three-dimensional measurement of the rotation angle - around the X, Y and Z axes. You can also find gyroscopes enabling measurement in one or two axes, but three-axis gyroscopes in the form of a small board with electronics turned out to be a solution characterized by a low price and at the same time very popular among DIY enthusiasts. A gyroscope is equipment that every DIY enthusiast and electronics beginner should be familiar with.
MEMS gyroscopes - small and practical
If you want to develop your robot design in terms of its balance stability when stopping, moving or standing still on an uneven surface, an excellent solution will be to use a small MEMS gyroscope which, by measuring the angular deviation of the robot from the equilibrium position, will send information to Arduino, which will control appropriate motors and servomechanisms, will give the robot the right position, preventing it from unintentionally tipping over. How does a MEMS gyroscope work? The sensor built into these devices has dimensions not exceeding the diameter of a human hair and works based on the phenomenon of mechanical resonance. When the gyroscope is rotated, the MEMS sensor converts this movement into a very low voltage signal, proportional to the rotation angle. Then, this signal is amplified and transmitted to the microcontroller, where the program makes further decisions depending on the read voltage value.
Accelerometer - easy measurement of acceleration
Accelerometers are devices whose task is to measure acceleration - a quantity that describes how quickly an object's speed changes over time. Accelerometers are helpful tools in measurement systems for detecting vibrations of the tested object and in navigation systems. The accelerometer detects the static and dynamic effects of acceleration. Static forces include gravity, and dynamic forces include vibration and displacement. Accelerometers can measure acceleration in one, two, or three axes of a coordinate system, but as with gyroscopes, the three-axis solution is superior. The structure of a typical accelerometer includes microscopic electrodes forming a capacitor suspended on springs. Under the influence of acceleration, the electrodes move relative to each other, changing the capacitance between them - the speed of these changes makes it possible to determine the acceleration of the object on which the accelerometer works. There are also piezoelectric accelerometers in which a suitable material, under the influence of mechanical influence, generates an electric charge on its surface - this phenomenon is used, among others, when performing seismic measurements.
Magnetometer - designed to work with a gyroscope and accelerometer
Among the MEMS sensors offered by the Botland store, you will find devices with a built-in gyroscope, accelerometer, and magnetometer - a device used to measure the magnetic field intensity, most often based on the Hall effect or magnetoresistance phenomenon. In a Hall magnetometer, if we connect a voltage source to a metal plate, we cause a current to flow between the two surfaces of the plate. When we bring a source of magnetic field (e.g. a magnet) close to the powered plate, we distort the electron flow path on the plate's surface. Then, one side of the plate will be occupied by electrons and the other by protons. After connecting a voltmeter between both surfaces of the board, we will be able to read the voltage, the value of which depends on the intensity of the magnetic field and its direction of influence in space. However, the magnetoresistive concept of a magnetometer uses materials sensitive to a magnetic field - an iron-nickel alloy is often found. Such materials change their resistance when exposed to a magnetic field. The MEMS sensors available in our offer are also equipped with an I2C interface, thanks to which you can easily connect your gyroscope to work with e.g. Arduino or Raspberry Pi.