Accelerometers, gyroscopes and inertial navigation systems (IMU) are small, multi-purpose sensor devices that appear in an increasing number of electronic devices in our daily environment, including in mobile phones, game consoles, toys, self-balancing robots, as well as in Motion Capture - the technology of human body movement analysis used not only in medicine. Accelerometers are mainly used to measure the linear acceleration of an object, gyroscopes to measure its angular velocity and orientation, and the IMU systems are an integrated combination of a gyro and accelerometer, providing the control system with all the necessary data about the movement and position of the object. The implementation of such measurement functions is also possible thanks to our Grove accelerometers and gyroscopes.
Accelerometers
ADXL345 3-axis I2C/SPI digital accelerator - module
Sensor for measuring acceleration in three axes in the range +/- 16 g. The module is powered with the voltage from 3 to 5 V, it has the voltage regulator and is communicating...Grove - 3-acces accelerometer MMA7660FC - I2C - Seeedstudio 101020039
Module with 3-axis accelerometer, based on MMA7660FC chip . Allows measurement of 3-axis acceleration within ± 1. 5 g. The module communicates through the I2C interface,...- On sale!
MPU-6050 3-axis accelerometer and I2C gyroscope - DFRobot module
Sensor for measuring acceleration and angular velocity in three axes. It is a combination of 3-axis accelerometer and gyroscope. It is characterized by simple operation, it...AltIMU-10 v5 - gyroscope, accelerometer, compass and I2C 3-5V altimeter - Pololu 2739
Sensor for measuring acceleration, magnetic field, angular speed and altitude. It is a combination of 3-axis accelerometer and gyroscope LSM6DS33, LIS3MDL magnetometer and...Piezoelectric vibration sensor - SparkFun SEN-09196
Piezoelectric vibration sensor, used for measurement of touch, vibration, shock and flexibility. A small AC voltage and high voltage up to 90 V, it occurs when the foil moves...BNO085 9-DOF IMU Fusion Breakout - 3-axis accelerometer, magnetometer and gyroscope - Adafruit 4754
Sensor based on the BNO085 system equipped with an accelerometer, magnetometer and gyroscope. Allows you to measure acceleration, spatial orientation, and where the strongest...DFRobot Gravity - vibration sensor with piezoelectric membrane
Analog vibration sensor with piezoelectric membrane. It is powered with the voltage from 3.3 V to 5 V, it works with Arduino modules.LIS3DH 3-axis I2C/SPI digital accelerometer - STEMMA QT - Adafruit 2809
Sensor for measuring acceleration in three axes in the range: ± 2g, ±4 g, ±8 g / ±16 g. Powered with the voltage from 3 V to 5 V. It communicates over the I2C or SPI bus.Tilt / shock sensor - Iduino SE059
The tilt sensor detects changes in position. It can work as a shock sensor. The m odule for communication uses the digital output . It w orks with voltage of 5 V.Gravity - 9DOF sensor BMX160 + temperature and pressure sensor BMP388 - I2C- DFRobot SEN0252
The module is equipped with two BMX160 and BMP388 sensors. BMX160 is a 9-axis sensor which allows to measure the acceleration in the ranges ± 2 g / ± 4 g / ± 8 g / ± 16 g...Gravity - LIS2DW12 - 3-axis accelerometer ±2g/±4g/±8g/±16g - I2C - DFRobot SEN0409
Gravity module in a form of 3-axis accelerometer , which allows to measure linear acceleration. It has a built-in LIS2DW12 chip (belonging to the popular LIS series) and...SparkFun Micro 6DoF IMU - ISM330DHCX - 3-axis accelerometer and gyroscope - SparkFun SEN-20176
A miniature 6 DoF module equipped with the ISM330DHCX system by STMicroelectronics - a 3-axis accelerometer and a 3-axis gyroscope. Measures linear acceleration in the range...Grove - Collision Sensor - collision and vibration sensor
Collision sensor from Grove. It detect collision and vibration. It has an additional external circuit, to reduce the effect of ambient noise. The module is supplied with the...- Reduced price
- Promotion
Triple Axis Accelerometer Breakout - LIS3DH - SparkFun SEN-13963
Sensor LIS3DH is a 3-axis digital accelerometer. It allows you to measure acceleration in the configurable ranges. It communicates via the I2C or SPI bus, it is powered from a...Fermion - 3-Axis Accelerometer - I2C LIS2DW12 - DFRobot SEN0405
Fermion series module with powerful 3-axis accelerometer LIS2DW12 , manufactured by DFRobot. It features low power consumption (50 nA) , as well as low noise. The module...Environmental sensor - hat for Raspberry Pi - Waveshare 20471
An environmental sensor in the form of an overlay for Raspberry Pi equipped with a number of useful sensors. It has built-in temperature , humidity , air pressure, ambient...LSM6DS3TR-C 6-DoF IMU - 3-axis accelerometer and gyroscope - Adafruit 4503
The sensor is based on the LSM6DS3TR-C system, equipped with a 3-axis accelerometer and a 3-axis gyroscope. Easily add motion detection and orientation features to your...MinIMU-9 v5 9DOF - accelerometer, gyroscope and magnetometer I2C - Pololu 2738
The sensor allows to measure 9 sizes: acceleration X, Y, Z magnetic field X, Y, Z and angular velocity X, Y, Z. It is a combination of 3-axis accelerometer and gyroscope...Grove - 3 Axis Digital Accelerometer 16g Ultra - Low Power (BMA400)
Grove module 3-axis ±16 g low power digital accelerometer. It is a 12-bit digital three-axis sensor that detects acceleration and movement. Based on a BMA400 chip. Powered by...Grove - 6-axis accelerometer and gyroscope LSM6DS3 - Seeedstudio 105020012
The module is equipped with a 6-axis accelerometer and a gyroscope based on the LSM6DS3 system with a built-in power regulator. It allows to measure 6 sizes: acceleration X,...ICM-20948 9DoF - 3-axis accelerometer, gyroscope and magnetometer I2C/SPI Qwiic - Adafruit 4554
The Adafruit module is a combination of 3-axis gyroscope, accelerometer and compass. It allows to measure acceleration, magnetic field and angular velocity. The measuring...LSM6DS33 - 3-axis accelerometer and I2C/SPI gyroscope - Pololu 2736
Sensor allows you to measure 6 variables: acceleration X, Y, Z and angular velocity X, Y, Z. It is a combination of 3-axis accelerometer and gyroscope. It communicates via the...Piezoelectric sensor of vibration with mass - SparkFun SEN-09197
Piezoelectric vibration sensor, used for measurements of touch, vibrations, hits and flexibility. A small AC voltage and high voltage of up to 90 V, it occurs when the foil...Grove - MMA7660FC 3-axis digital accelerometer I2C
Module with 3-axis accelerometer based on MMA7660FC chip with digital I2C output and Grove connector. The MEMS sensor has a low power consumption and low profile. The module...See also
- Oxygen sensors
- Resistance sensors
- Door sensors
- Nfc readers
- Inductive sensors
- RPM sensors
- Led motion detectors
- Tilt sensors
- Twilight sensors
- Wifi temperature sensors
- Hall effect sensors
- QR readers
- Piezoelectric sensors
- Optical sensors
- Alarm sensors
- 9DoF IMU sensors
- Pressure sensors
- Air quality sensors
- Sound sensors
- Gesture sensors
- Limit switches
- Sensors of light and color
- Gas sensors
- Magnetic sensors
- Medical sensors
- Pressure sensors
- Sensors odbiciowe
- Distance sensors
- Inductive contactless sensors
- Weather sensors
- Liquid level sensors
- Current sensors
- Flow sensors
- Motion sensors
- Temperature sensors
- PT100 temperature probes
- Humidity sensors
- Fingerprint readers
- Encoders
- Photoresistors
- Phototransistors
- IR receivers
- Magnetometers
- Gyros
- Sensor sets
- Grove modules
- Gravity modules
Accelerometers - the direct measurement of linear acceleration
3-axis accelerometers measure linear acceleration in three axes (X, Y, Z). A uniaxial accelerometer allows you to measure acceleration in any indicated direction. This is used in missiles, homing missiles, trains, and other applications where the object moves in one specific direction. By knowing the acceleration, velocity and time, the measurement system can calculate the distance travelled by the object. Due to the nature of the influence of the Earth's gravitational field, the acceleration of the earth is constant but also measurable by accelerometers - this will be noticeable when you place the accelerometer with the housing perpendicular to the ground of the Earth, and the acceleration will then be measured only in one axis (e.g. Z, for the X-axis and Y will be zero), while when the accelerometer is deflected by an angle different than 90 �, the measured acceleration, although it will be constant, its value will be further co-created by the value for the Z-axis and the non-zero values of the components for the X and Y axes.
Interfacing accelerometers with Arduino boards
On most of the accelerometer boards offered at our store, the output should be connected to the analogue input on the Arduino board. Grove modules require a 3.3V or 5.0V power supply. When choosing an accelerometer to suit your project's needs, you must consider the maximum value of linear acceleration that the accelerometer can measure. For example, for a small riding robot, an accelerometer with a maximum range of linear acceleration of 2 g (twice the acceleration of gravity) will be appropriate, and for a rocket model, an accelerometer with a range of 16 g will be appropriate. In addition to the accuracy of the measurement reading, which is determined by the bit resolution of the analogue-to-digital converter included in the structure of the microcontroller with which the accelerometer works, it is worth knowing that the larger the measuring range of the accelerometer, the greater the measurement accuracy. If you choose an accelerometer with a too-small measuring range for your project, then you may notoriously obtain information about the reading off-scale, which will make it impossible to correctly determine the acceleration of the object.
What other factors are worth paying attention to when buying an accelerometer?
When using accelerometers, gyroscopes or IMU systems, to achieve and maintain the required position of an object in space, other factors may affect the measurement results. The main problem is the sampling rate of the analogue-to-digital converter built into the microcontroller that receives the signal from the gyroscope through the analogue input. Due to the structure of the Sample & Hold system, the microcontroller "needs" a certain amount of time to measure and store the measurement result, some measurement data is lost during each holding cycle of the previously measured voltage signal. One of the most popular methods to partially compensate for this problem is the use of the Kalman filter. Another factor influencing the accuracy of the measurement is temperature changes, to which the sensors may be particularly sensitive, depending on the quality of the structure, including the term kinetics of the elements that the sensor is made of. Most MEMS sensor application notes describe the effect of temperature on the sensor output signal.